




   
 

Ref: IITPKD/2020/025/EE/MRP/001 

26 August 2020 

To, 
Ms. Harini Narasimhan 
202/6, Golden Opulence,  
Poonamallee Bypass Road,  
Thirumal Nagar, Thiruvallur, 
Tamil Nadu PIN: 600056  

Dear Ms. Harini Narasimhan, 

Subject: Letter of Appointment as Senior Research Fellow 

On behalf of the Indian Institute of Technology Palakkad, we are pleased to offer you an appointment                 
as a Senior Research Fellow in our institute in the discipline of Electrical Engineering.  

As a Senior Research Fellow, you will work on the project titled “An automated lung ultrasound                
workflow for diagnostic assistance in COVID-19 and beyond” under the mentorship of Dr. Mahesh              
R. Panicker, Assistant Professor, Electrical Engineering, who would be your Reporting Faculty. We             
believe that this would provide you opportunities for scholastic, research and professional            
development. 

Please take note of the following details of this offer of appointment. 
1) The position is temporary and the appointment will be on contract for a period of one year                 

starting from the date of joining the institute. 
2) The monthly remuneration for this position will be Rs. 35,000/- (Thirty Five Thousand rupees              

only). Hostel accommodation may be provided at the institute based on availability on a              
chargeable basis. In case of non- availability of institute hostel, admissible HRA at 8% will be                
provided as per Government of India rules. 

3) During your employment at IIT Palakkad, your services and conduct will be governed by the               
administrative orders and rules in force from time to time at the institute. 

Please confirm your acceptance of this offer by replying no later than 02 September 2020.  
We expect you to join at the earliest and let us know your joining date after consulting with your                   
reporting officer and mentor, Dr. Mahesh R. Panicker. You are advised to contact him to finalize                
your joining date. 

Yours sincerely 

 

Prof. Vinod A. Prasad 
Dean - Industry Collaboration & Sponsored Research (ICSR) 
Indian Institute of Technology Palakkad 

 



Convolution Neural Network and Generative
Model based Classification in Medical Imaging

A THESIS

Submitted by

Ramji Balasubramanian
(CB.EN.P2CEN18011)

in partial fulfillment for the award of the degree of

MASTER OF TECHNOLOGY
IN

COMPUTATIONAL ENGINEERING AND NETWORKING

Center for Computational Engineering and Networking

AMRITA SCHOOL OF ENGINEERING

AMRITA VISHWA VIDYAPEETHAM
COIMBATORE - 641 112 (INDIA)

June - 2020



AMRITA SCHOOL OF ENGINEERING

AMRITA VISHWA VIDYAPEETHAM
COIMBATORE - 641 112

BONAFIDE CERTIFICATE

This is to certify that the thesis entitled “Convolution Neural Network and Gener-

ative Model based Classification in Medical Imaging” submitted by Ramji Bala-

subramanian (Register Number- CB.EN.P2CEN18011), for the award of the

Degree of Master of Technology in the “COMPUTATIONAL ENGINEER-

ING AND NETWORKING” is a bonafide record of the work carried out by him

under our guidance and supervision at Amrita School of Engineering, Coimbatore.

Dr. Sowmya V
Project Guide
Assistant Professor (Sr.Gr.), CEN

Dr. E. A. Gopalakrishnan
Project Co-Guide
Assistant Professor (SG), CEN

Dr. K. P. Soman
Project Co-Guide
Head, CEN

Mr. Vijay Krishna Menon
Project Co-Guide
Assistant Professor (Sr.Gr.), CEN

Mr. Sajith Variyar V. V.
Project Co-Guide
Assistant Professor, CEN

Submitted for the university examination held on ... ... ... ... ... ...

INTERNAL EXAMINER EXTERNAL EXAMINER

20/06/2020



AMRITA SCHOOL OF ENGINEERING

AMRITA VISHWA VIDYAPEETHAM
COIMBATORE - 641 112

DECLARATION

I, Ramji Balasubramanian (CB.EN.P2CEN18011), hereby declare that this the-

sis entitled “Convolution Neural Network and Generative Model based Clas-

sification in Medical Imaging ”, is the record of the original work done by me under

the guidance of Dr.Sowmya V, Assistant Professor, Dr.E.A.Gopalakrishnan, As-

sistant Professor, Mr.Vijay Krishna Menon, Assistant Professor,Mr.Sajith Vari-

yar V.V, Assistant Professor and Dr.K.P.Soman, Professor and Head, Centre for

Computational Engineering and Networking, Amrita School of Engineering, Coimbat-

ore. To the best of my knowledge this work has not formed the basis for the award of

any degree/diploma/ associateship/fellowship/or a similar award to any candidate in

any University.

Place: Signature of the Student

Date:

COUNTERSIGNED

Dr. K.P.Soman

Professor and Head

Center for Computational Engineering and Networking

Coimbatore

12/6/2020



Contents

Acknowledgement iv

List of Figures v

List of Tables vi

List of Abbreviations vii

1 Introduction 1

1.1 Litereature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Comet Assay Damage Detection using CNN based Deep Learning

Approach 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Overview of Comet Assay . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . 7

i



2.2.1 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Convolutional layer . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Leaky ReLU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.4 Dense Layer/Fully Connected Layer . . . . . . . . . . . . . . . . 9

2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Decision Tree Algorithm . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . 13

2.4.3 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . 13

2.4.4 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Analysis of Adversarial based Augmentation for Diabetic Retinopathy

Disease Grading 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Overview of Diabetic Retinopathy . . . . . . . . . . . . . . . . . 17

3.1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Genarative Adversarial Network . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ii



3.3.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.2 Preprocessing techniques . . . . . . . . . . . . . . . . . . . . . . 22

3.3.3 Retinal Synthetic Image Generation . . . . . . . . . . . . . . . . 22

3.3.4 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Experiements and Results . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Conclusion and Future Work 29

DNA Damage analysis tool 35

List of Publications based on this research work 37

iii



Acknowledgement

First of all, I thank Almighty for the immeasurable blessings for smooth completion

of my project. I am immensely pleased to express my sincere obligation to my project

guide Dr. Sowmya V, Assistant Professor (Sr.Gr.) and my project co-guides Dr.

E. A. Gopalakrishnan, Assistant Professor (SG), Mr. Vijay Krishna Menon,

Assistant Professor (Sr.Gr.), Mr. Sajith Variyar V. V, Assistant Professor and Dr.

K.P.Soman, Professor and Head, Centre for Computational Engineering and Network-

ing, Amrita School of Engineering, Coimbatore, for their valuable guidance, dedication

and encouragement for the successful completion of this project.

I am grateful to the entire staff of CEN, and research scholars of the Department

for their timely cooperation. I avail this opportunity to thank my friends for their

whole-hearted support in the difficult stages of the project.

I am greatly indebted to my loving family members for being the motivating forces

behind the completion of this dissertation. Also I am grateful for their invaluable help,

moral support and encouragement throughout the course of study.

iv



List of Figures

2.1 Comet Assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Confusion matrix a) whole data b) test data . . . . . . . . . . . . . . . 12

2.6 Confusion matrix for ANN model . . . . . . . . . . . . . . . . . . . . . 13

2.7 Confusion matrix for SVM model . . . . . . . . . . . . . . . . . . . . . 14

2.8 Confusion matrix for proposed model . . . . . . . . . . . . . . . . . . . 15

3.1 Sample Images for DR grading . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 EYEPACS Dataset used for the Proposed Adversarial based Data Aug-

mentation for DR Grading. . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Proposed DCGAN Model for the Image Generation used for DR Grading 22

3.4 Classifier Model for validating the DR grading with and without data

augmentation using generated images . . . . . . . . . . . . . . . . . . . 24

3.5 Cosine distance between the augmented images using the proposed DC-

GAN for different batch size and the original images present in the pro-

liferative class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Original Proliferative and generated synthetic images when batch size is

4,8 and 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Home page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Result page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



List of Tables

2.1 Models with f1-score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Average Cosine Distance with a varying batch size of the proposed DC-

GAN model used for DR image generation . . . . . . . . . . . . . . . . 26

3.2 Classification result for DR grading with and without augmentation . . 27

vi



List of Abbreviations

SCG Single Cell Gel
MGE MicroGel Electrophoresis
HOG Histogram of Gradient
SVM Support Vector Machine
ANN Artificial Neural Networks
CNN Convolutional Neural Network
DR Diabetic Retinopathy
GAN Generative Adversarial Network
DCGAN Deep Convolutional Generative Adversarial Network
G Generator
D Discriminator

vii



Abstract

The deep neural network is an emerging machine learning method that has proven

its potential for different classification tasks. Notably, the Convolutional Neural Net-

work(CNN) dominates with the best results on varying image classification tasks. CNN

plays an important role to extract features from Medical images, which inturn helps

in medical field to detect the diseases faster. However, medical image datasets are

hard to collect because it needs a lot of professional expertise to label them. In this

work, we took two different applications in medical field. One is to classify the dam-

aged comets from undamaged comets using Comet assay images and another one is

to generate retinal synthetic images using generative adversarial network (GAN) for

highly imbalanced Diabetic Retinopathy(DR) disease grading. In first application, the

human effort on analysing the effect of genetoxicity and DNA damage detection from

microscopy examination is addressed using CNN based image processing approach. The

proposed CNN based model were compared with existing models and proved to achieve

a better classifcation f1-score of 0.9045. An accurate automatic classification model re-

quires sufficient data for training. In second application analysis of classification results

is carried out by augmenting highly imbalanced class in the EYEPACS dataset using

generated synthetic images. We generated highly diverse images for imbalanced cases

without any constraints. The generated synthetic images do not influence other class

images and have also improved the classification results obtained by the model, over

that which was trained without synthetic generation. The results obtained before and

after augmentation by the proposed generative based model is compared over various

model attributes.
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Chapter 1

Introduction

In recent days, Deep Learning (DL) is very popular and is used for solving research

problems in wide range of fields like biomedical[1], cyber security[2], autonomous ve-

hicles[3], etc. Deep learning models are replacing traditional machine learning based

models due the fact that, DL models have the ability to automatically extract the useful

features from the input, while the traditional machine learning models require manual

feature engineering. One of the most popular Deep learning (DL) architectures is Con-

volutional Neural Network (CNN). CNN is very popular in the computer vision field

as it uses convolution filters in order to extract the various location invariant features.

Since CNN model works well with the images, various CNN models and its variants are

used in biomedical fields like x-ray reconstruction [4], mammogram detection [5], liver

lesion classification[6], Brain MRI scan segmentation [7] etc.

The medical images are hard to collect, as the collecting and labeling of medical data

confronted with both data privacy concerns and the requirement for time-consuming

expert explanations. In the two general resolving directions, one is to collect more

data, such as crowd sourcing[8] or digging into the existing clinical reports[9]. An-
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other way is to increase the performance of a small dataset, which is very important

because the knowledge achieved from the research can migrate to the research on big

datasets. CNN-based methods have various strategies to increase the performance of

image classification on small datasets using data augmentation techniques. The cur-

rent work focuses on various applications of medical image classification using CNN

and generative model.

1.1 Litereature Review

There is a wide variety of medical imaging modalities used for the purpose of clinical

prognosis and diagnosis and in most cases the images look similar. This problem is

solved by deep learning, where the network architecture allows learning difficult infor-

mation. Hand crafted features work when expert knowledge about the field is available

and generally make some strict assumptions. These assumptions may not be useful

for certain tasks such as medical images. Therefore, with the hand-crafted features in

some applications, it is difficult to differentiate between a healthy and non-healthy im-

age.Applications of CNNs in medical image analysis can be traced to the 1990s, when

they were used for computer-aided detection of microcalcifications in digital mammog-

raphy [10],[11] and computer-aided detection of lung nodules in CT datasets[12]. With

revival of CNNs owing to the development of powerful GPU computing, the medical

imaging literature has witnessed a new generation of computer-aided detection systems

that show superior performance.For instance, in [13], the fully connected layers of a

pre-trained CNN were replaced with a new logistic layer, and then the labeled data
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were used to train only the appended layer while keeping the rest of the network the

same. This treatment yielded promising results for classification of unregistered multi-

view mammogram. Chen et al.[14] suggested the use of a fine-tuned pre-trained CNN

for localizing standard planes in ultrasound images. With the rapid increase in data

and computation resources, CNN-based methods have significantly improved DR clas-

sification performance. Pratt proposed a 13- layer CNN for screening DR[15]. Recently,

some researchers have also exploited GANs to synthesize retinal fundus images. Using

GANs for medical image synthesis[16] could potentially address the shortage of large

and diverse annotated databases. Costa et al.[17] first adopted a U-Net architecture to

transfer vessel segmentation masks to fundus images using a vanilla GAN architecture.

However, the generated samples have block defects and do not have controllable grading

information.
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Chapter 2

Comet Assay Damage Detection
using CNN based Deep Learning
Approach

2.1 Introduction

2.1.1 Overview of Comet Assay

The comet assay, also called the single cell gel assay (SCG) and microgel electrophoresis

(MGE) was first introduced by Ostling and Johanson in 1984 as a microelectrophoretic

technique for the direct visualization of DNA damage in individual cells. A small

number of irradiated cells suspended in a thin agarose gel on a microscope slide were

lysed, electrophoresed, and stained with a fluorescent DNA binding dye. The electric

current pulled the charged DNA from the nucleus such that relaxed and broken DNA

fragments migrated further. The resulting images as shown in Figure 1.1, which were

subsequently named for their appearance as ’comets’, were measured to determine the

extent of DNA damage/ DNA breakage.
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Figure 2.1: Comet Assay

2.1.2 Related Works

The Single cell gel electrophoresis is a method for analysing the effect of genotoxicity by

DNA breakage analysis [18]. The effect of genotoxicity is measured based on comparing

the damage of DNA treated with different concentrations of chemicals with the damage

of DNA treated with Control(water) and Positive Control(Hydrogenperoxide). It is

known that the water does not cause any damage to the DNA but Hydrogenperoxide

causes higher damage[19]. The damage analysis can be performed either by visual

scoring technique or image analysis techniques such as measuring parameters like tail

length, tail moments of a comet [20].The visual scoring needs experts advice and also

time consuming. Therefore, various software tools were developed to quantify the DNA

damage of comets and to classify them based on quantification [21][22][23]. Most of

the open-source software do not classify comets based on its level of damage except
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hi-comet[23].

Hi-comet[23] extracts histogram of gradient (HOG) features from comet images

along with box-ratio and classify comets using support vector machine(SVM), Neu-

ral Networks, AdaBoost and classification and regression tree. The SVM with linear

kernel achieved best with 0.904% accuracy. In [24], the damage classes of comets are

normal,abnormal and fail that are determined by measuring ratio,roundness and peak

height as parameters. The classification algorithm uses decision tree algorithm which

is later tested on 300 comets has achieved 86.8% accuracy.

In [25], a new approach to automate the visual scoring technique using digital

image processing with machine learning is proposed. Fourteen different features like

area,perimeter,min radius were extracted and classified the features into five types based

on degree of damage.This algorithm uses Artificial Neural Networks with two hidden

layers with relu activation function. The proposed ANN model was able to achieve 90%

for some types whereas it could not meet the reliable accuracy for all types due to less

number of samples.

A transfer learning based Convolutional neural network model to classify the levels

of damage in comet images for tiny dataset were proposed in [26]. The transfer learning

model VGG16 gives 70.5% accuracy, CNN-SVM and ordinary CNN gives 62.5% and

63.5% accuracy respectively. This approach includes few preprocessing techniques like

image size normalization, noise data removal and image segmentation. A threshold

value at HSV color space is used to segment the comets.Further the segmented comets

were used to train the CNN based model.
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2.1.3 Motivation

• The existing open-source software fails to classify the comets based on its level of

damage except Hi- Comet.

• The existing work [23],[24],[25] and [26] needs human intervention either to extract

features or setting up a threshold in segmenting the comets.

2.1.4 Contribution

In this work, we propose an algorithm to classify the comet assay images as damaged

or undamaged using CNN based deep learning model. To do so, we experimented with

empirically chose the model which gives a promising f1-score. This classification method

can be used as an initial step by researchers to decide on further study on the effect of

genotoxicity.

2.2 Convolutional Neural Network

Convolutional Neural Networks are very similar to ordinary Neural Networks from the

previous chapter: they are made up of neurons that have learnable weights and biases.

Each neuron receives some inputs, performs a dot product and optionally follows it with

a non-linearity. The whole network still expresses a single differentiable score function:

from the raw image pixels on one end to class scores at the other. And they still have

a loss function (e.g. Softmax) on the last (fully-connected) layer.
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Figure 2.2: Neural Network

2.2.1 Neural Network

Neural Networks as shown in Figure 1.2 receive an input (a single vector), and trans-

form it through a series of hidden layers. Each hidden layer is made up of a set of

neurons, where each neuron is fully connected to all neurons in the previous layer, and

where neurons in a single layer function completely independently and do not share

any connections. The last fully-connected layer is called the “output layer” and in

classification settings it represents the class scores.

2.2.2 Convolutional layer

A convolutional layer contains a set of filters whose parameters need to be learned. The

height and weight of the filters are smaller than those of the input volume. Each filter
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is convolved with the input volume to compute an activation map made of neurons.

The output volume of the convolutional layer is obtained by stacking the activation

maps of all filters along the depth dimension. Since the width and height of each filter

is designed to be smaller than the input, each neuron in the activation map is only

connected to a small local region of the input volume. In addition, as the activation

map is obtained by performing convolution between the filter and the input, the filter

parameters are shared for all local positions. The weight sharing reduces the number of

parameters for efficiency of expression, efficiency of learning, and good generalization.

2.2.3 Leaky ReLU

Leaky Rectified Linear activation is first introduced in acoustic model[27]. Mathemat-

ically, we have

yi =

{
xi xi ≥ 0
xi

ai
xi < 0

where ai is a fixed parameter in range (1, +∞). In paper, the authors suggest to set ai

to a large number like 100.

2.2.4 Dense Layer/Fully Connected Layer

Neurons in a fully connected layer have full connections to all activations in the previous

layer. Their activations can hence be computed with a matrix multiplication followed

by a bias offset.
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Figure 2.3: Dataset Description

2.3 Methodology

The Comet Assay images are annotated as damaged or undamaged using ImageJ soft-

ware. The annotated images are classified with various existing works along with the

proposed CNN model and the results are compared to decide on better solution.

2.3.1 Dataset Description

The total of 3000 comet assay images treated with Control(water), Positive Con-

trol(hydrogen peroxide) and three different concentrations of diethyl phthalate (1ngml,10mgml

and 100ngml) were collected and annotated with the help of experts for damaged and

undamaged comets using ImageJ software. From the annotated images 383 damaged

comets were taken from Positive control and 450 undamaged comets from control are

used for training and the remaining damaged and undamaged comet images of cells

treated with control and positive control were used as validation data. The test data

includes comets images cropped from different concentrations of diethyl phthalate. The

data set is splitted as shown in Figure 1.3.
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Figure 2.4: Proposed Architecture

2.3.2 Classification

The comets are classified as damaged or undamaged comet. In this module,we propose

an algorithm to classify the comet images using CNN based deep learning model as

shown in Figure 1.4 by training only the DNA comets of cells treated with control and

positive control. Since cells treated with control and positive control is required for

damage analysis of genotoxins, training the model with them makes it a generalized

approach. The proposed CNN model includes two convolutional layers and two dense

layers with LeakyRelu activation between the layers. The choice of proposed model is

based on empirical tuning of hyperparameters. The ground truth of class labels are

provided by the domain experts. The performance of the various experimented models

were compared based on f1-score and the model with highest f1-score has been chosen

as the proposed model to classify the comets.
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Figure 2.5: Confusion matrix a) whole data b) test data

2.4 Experiments and Results

2.4.1 Decision Tree Algorithm

As explained in paper [24] ratio,roundness and peak height features were extracted for

all the 1490 images. The box ratio of an image is calculated as the ratio of width and

height of the image. The correlation coefficient between the comet image and an oval

shape image is defined as roundness. Peak Height is defined as the relative intensity of

the nucleus over the highest intensity column from the image. Since we do not have

any training process for this algorithm, the performance of the model on the complete

annotated dataset and test data alone is performed and shown as confusion matrix in

Figure 1.5.
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Figure 2.6: Confusion matrix for ANN model

2.4.2 Artificial Neural Network

The Artificial neural network proposed in [25] has 2 hidden layers each with 12 and 8

neurons respectively were trained to classify the five different types from the extracted

features. The model is tested on comet images and the obtained result is shown in

Figure 1.6.

2.4.3 Support Vector Machine

The histogram of gradient (HOG) features are used in computer vision object detection

task. The HOG features will extract the edge features along with its directions and

store as a descriptor. These features are extracted as mentioned in [23] along with its

box ratio (width and height ratio) and classified using Support Vector Machine. The

confusion matrix for SVM model is shown in Figure 1.7.
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Figure 2.7: Confusion matrix for SVM model

2.4.4 Proposed Method

All the existing algorithms mentioned above does not meet the significant result. So,

we came up with an algorithm using CNN based deep learning approach to classify

the comet images as damaged and undamaged. The preprocessing of the comet images

includes resize to (128,128,3), normalization and histogram equalization. The hyper

parameters such as number of layers in the network, number of filters in the convolution

layers and the number of neurons in the dense layers of the model are empirically tuned

with fixed batch size of 32 to get better results and their performances are compared

based on f1 score as shown in Table 1.1. The chosen model is then experimented with

data augmentation such as horizontal flip and vertical flip which improved the f1 score

from 0.8405 to 0.9045.

The performance of the model is evaluated on 302 damaged comets and 174 undam-
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Figure 2.8: Confusion matrix for proposed model

aged comets. The Confusion matrix which summarizes the model is shown in Figure

1.8. Further the precision,recall and f1-score for the proposed model is 0.8986, 0.9106

and 0.9045.
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Table 2.1: Models with f1-score

Model F1-score on test data
Conv(64) + Dense(256) 0.8135

Conv(64) + Dense(256) + Dense(128) 0.8355
2 * Conv(64) + Dense(256) + Dense(128) (Proposed Model) 0.8405

2 * Conv(64) + Maxpool + Dense(256) + Dense(128) 0.8402
2 * Conv(64) + Maxpool + Conv(128) + Dense(256) + Dense(128) 0.7977
2 * Conv(64) + Maxpool + Conv(128) + Dense(512) + Dense(256) 0.8303

2 * Conv(64) + Maxpool + Conv(128) + Conv(64) +
Maxpool + Dense(512) + Dense(256)

0.8342

2 * Conv(64) + Maxpool + Conv(128) + Maxpool + 2 * Dense(256) 0.8217
2 * Conv(32) + Maxpool + Conv(64) + Maxpool + Dense(256) 0.8379

2 * Conv(32) + Maxpool + 2* Conv(64) + Maxpool + Dense(256) 0.8305
2 * Conv(32) + Maxpool + 2*Conv(64) + Maxpool +

Dense(256) + Dense(64)
0.8297
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Chapter 3

Analysis of Adversarial based
Augmentation for Diabetic
Retinopathy Disease Grading

3.1 Introduction

3.1.1 Overview of Diabetic Retinopathy

Diabetic Retinopathy (DR) is a disease which causes blindness to diabetic patients

and the number of such cases are increasing dramatically. Study shows early detection

and treatment of DR can restore 90% of the lost vision effectively; it is recommended

to regularly screen patients. DR is graded into five classes: normal(No DR), mild,

moderate, severe and proliferative DR as shown in Figure 2.1[28]. The grading is a

time consuming and tedious process. Whereas with the advancement in technology a

huge difference can be made with automating the grading process[29][30][15].

3.1.2 Related Works

Seoud et al. extracted 35 different features from fundus images and classified them us-

ing random forest [29]. The first step towards automatic grading by Seoud et al showed
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Figure 3.1: Sample Images for DR grading

a comparable result to that achieved by the domain experts. The deep learning era

has made the classification even better with deep convolutional layers. Several works

like [31],[32] and [33] use a deep Convolutional Neural Network(CNN) for classification

and gave state of the art accuracy to the problem. Training CNN networks requires

a diverse and huge volume of data. The collection of such data is very hard due to

privacy laws and medico legal complications; the data is not available. This might

be the reason the EYEPACS dataset[34] is highly imbalanced and biased towards the

normal class. Statistically too, observing a disease is analogous to observing a defect

or a fault; both are significantly less likely events contributing to imbalanced datasets.

In literature, the use of many augmentation techniques in CNN, to overcome the im-

balance in the datasets,are detailed in [35],[36],[37] and [38]. We have employed some

of these traditional augmentation techniques namely rotation, flipping and cropping.
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Though this overcomes the imbalance problem to some extent, the augmented images

are not diverse enough limiting the model performance [39]. So, synthetically gener-

ated images are used to create diversity within the dataset.. Generative Adversarial

Networks (GAN) [40], introduced in the year 2014, is widely being used to generate syn-

thetic images. GANs have the ability to address the shortage of images and have been

successfully used in medical image analysis involving chest X-Rays [41], Computerized

Tomography scans[42], and Magnetic Resonance images[17]. Recently, Costa et al. [17]

generated fundus images using image-to-image translation technique, but the generated

images have lesser information about grading. Zhao et al proposed Tubs-GAN [43], to

extend style transfer and increase the diversity of generated images. In [44], Zhou et

al generated synthetic retinal fundus images by conditioning the structural and lesion

masks. Though the generated images showed improvement in accuracy, the conditioned

lesion masks make the model more complicated and the generation of images for nor-

mal is not necessary since it already has enough data to train the model. Kaplan et al

[45], generated a diverse fundus image using an unconditioned DCGAN model, but the

model failed to capture the vessel trees of the fundus images clearly.

3.1.3 Contribution

In this paper, we aim to generate synthetic images for proliferative class and balance

it with the severe class which has the second-lowest number of images. The generated

and its original train images are trained, and compared the class-wise accuracy of

test data between before and after the synthetic generation. To make sure that the
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generated images are from the proliferative class, the average cosine similarity for the

real proliferative class was compared with the generated images. The diversity of images

generated among the classes is also analysed. The proposed model serves as a base

version on improving class accuracy using generated images. Here, we aim to improve

the classification results of specifically the proliferative class (as it contains the least

number of data samples) by augmenting with proliferative generated images. The novel

contribution in this paper includes the following.

• Unconditional GAN model to generate DR images, to reduce the complexity of

image generation.

• Diversity of intra class image generation,specifically for proliferative cases.

3.2 Genarative Adversarial Network

In 2014, Goodfellow et al.[40] proposed an adversarial network framework as an alter-

native generative model estimation process for deep generative networks, called GAN.

The main principle of a GAN is that there are two neural networks called the generator

(G) and the discriminator (D) that compete to maximize their gains. The main goal

for both networks is to improve their capabilities to generate and discriminate the data.

In this context, G draws samples from a random noise distribution and D discriminates

whether the samples are drawn from G or from real data (the training data).
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Figure 3.2: EYEPACS Dataset used for the Proposed Adversarial based Data Augmen-
tation for DR Grading.

3.3 Methodology

The images collected from the Kaggle EYEPACS dataset [34] are processed before

feeding into a GAN model. The GAN model generates a new set of synthetic images for

proliferative class and the best batch is selected based on the cosine distance measure

between the original images and the generated images. The generated images with

original images are used to train the classification model.

3.3.1 Dataset Description

The open-source Kaggle EYEPACS dataset[34] includes high-resolution retinal fundus

images collected under different imaging conditions. The dataset is split into train and

test images, containing 35,126 and 53,576 retinal images respectively. The five classes
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of DR with the number of images are represented in Figure 2.2 and it is evident that

the proliferative class is highly imbalanced with 708 images in the train set.

3.3.2 Preprocessing techniques

Among the whole dataset, images are collected and preprocessed in such a way that

extra black regions are removed. Furthermore, the images are resized to 128 x 128 x

3 and also normalized with the maximum value (255). These preprocessed images are

used for generation and classification models.

3.3.3 Retinal Synthetic Image Generation

Figure 3.3: Proposed DCGAN Model for the Image Generation used for DR Grading

The preprocessed proliferative images are fed into the discriminator of the Deep

Convolution Generative Adversarial Network (DCGAN) model inspired from [45] with
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few changes in convolutional layers to get the required output shape as shown in Figure

2.3 is trained for 500 epochs. The Synthetic retinal images (165 images) are generated

by the generator of the DCGAN model for every 10 epochs. The reason behind the

number of images in each generated batch is 165 because this is the difference between

the number of images in proliferative class (which has the least data samples (708))

and the Severe DR class, which has the second least data samples (873 images). The

diversity of the generated images are analyzed using cosine distance. For 50 different

generated image batches (each batch with 165 images), the difference between average

cosine distance for raw proliferative images (708 retinal images) and the mixture of raw

and generated proliferative images (708 + 165 generated images) are calculated. The

batch with the minimum difference is chosen for data augmentation.

3.3.4 Classifier

The classifier model [35] shown in Figure 2.4, is selected with cross-entropy as a loss

function, as the model resulted in the benchmark kappa score for the original EYEPACS

dataset. The experimentation includes training the chosen classifier model with and

without synthetically generated images. The generated proliferative images are chosen

based on the best cosine similarity index. Both the above-trained models i.e., trained

with and without augmentation are validated using the test data.
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Figure 3.4: Classifier Model for validating the DR grading with and without data
augmentation using generated images

3.4 Experiements and Results

The synthetic proliferative image generation is a crucial step in this work. The DCGAN

model is trained for 500 epochs with learning rate 1e-4 and different experiments are

performed by varying the batch size (shown in Table 2.1). The randomly generated

latent samples of vector size 100 x 1, are fed into the generator to generate 165 random

synthetic images. The cosine similarity measure is used to find the best batch size

generated by each model. Each DCGAN model with different batch sizes, generates 50

different batches (each with 165 synthetic images), as the generation is performed for

every 10 epochs.

Since InceptionV3 is one of the predominant models used to attain the benchmark

result in DR classification[30], the feature vector of size 2048 x 1 is extracted from the

same. This model is pre-trained with Imagenet images and the final global average

pooling is chosen to extract the feature vector. The cosine distance between the ex-
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tracted feature vectors for 708 proliferative images is calculated (708 x 708) and the

average cosine distance (Aoriginal) is computed as given below.

Average Cosine distance =
1

N −Nd

n∑
i=1

n∑
j=1

aij

where,

aij - Cosine distance matrix of size (n x n)

N - Number of elements in aij

Nd - Number of diagonal elements in aij

Similarly, the average cosine distance (Aaugmented) is calculated for shuffled original

proliferative images and synthetic images. The average cosine distance (Aoriginal) is

0.244492. From all the experimented models, the model with batch size 4 has produced

the Aaugmented closer to the obtained Aoriginal as shown in Figure 2.5. The minimum

difference between Aoriginal and Aaugmented is the best batch among the generated batches

for each model. The same was repeated for different models i.e., the model with the

different batch size, and the computed cosine similarity index are tabulated in Table

2.1.

From Table 2.1, it is clear that the synthetic images generated by the model with

batch size 4 are more similar to the original proliferative images. Further evaluation on

choosing the right batch size is carried by comparing the classification results (given in

Table 2.2) obtained by the generated images from all three models.

The classifier model is trained for 100 epochs with learning rate 1e-4 and batch size
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Figure 3.5: Cosine distance between the augmented images using the proposed DCGAN
for different batch size and the original images present in the proliferative class

Table 3.1: Average Cosine Distance with a varying batch size of the proposed DCGAN
model used for DR image generation

Batch Size

Average
Cosine

Distance
(Aoriginal)

Average
Cosine

Distance
(Aaugmented)

Difference
(Aoriginal -Aaugmented)

4 0.244492 0.243563 0.000929
8 0.244492 0.234786 0.009706
16 0.244492 0.292456 0.047964
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Table 3.2: Classification result for DR grading with and without augmentation

Score
Experiments

Batch Size
While generating GAN

Difference
( Aoriginal -Aaugmented)

Class
Precision Recall F1-score

0 0.78 0.87 0.82
1 0.10 0.03 0.05
2 0.27 0.25 0.26
3 0.17 0.07 0.10

Without Augmentation Nil Nil

4 0.28 0.07 0.11
0 0.77 0.89 0.83
1 0.10 0.03 0.04
2 0.26 0.21 0.23
3 0.16 0.09 0.11

4 0.000929

4 0.32 0.08 0.13
0 0.77 0.89 0.83
1 0.09 0.05 0.07
2 0.28 0.17 0.21
3 0.17 0.12 0.14

8 0.009706

4 0.26 0.08 0.12
0 0.78 0.88 0.82
1 0.09 0.04 0.05
2 0.28 0.21 0.24
3 0.15 0.06 0.08

With Augmentation

16 0.047964

4 0.25 0.12 0.17

15 with the original EYEPACS dataset and tested. The same classifier model is trained

by augmenting the existing proliferative images with generated synthetic images and

the test results are compared, which is shown in Table 2.2.

From Table 2.2, the precision score of the classifier model for proliferative class (class

4) is higher when the dataset is augmented by the DCGAN model with batch size 4.

Whereas, the generated images by DCGAN model with batch size 16 has achieved the

best F1 score and recall score. It is important that this augmentation should not impact

the class wise accuracies of other classes (0,1,2 and 3), as it is only targeted to improve

the performance of the proliferated class. The metrics of class 0 and class 1 have no

major difference in all the experiments. The F1 score of class 2 is better for the DCGAN

model with batch size 16 whereas for class 3, batch size 4 is better. Though the classifier

model with batch size 16 performs better classification, the average cosine distance

27



Figure 3.6: Original Proliferative and generated synthetic images when batch size is 4,8
and 16

between the original proliferative images and the augmented proliferative images is

higher. This implies that the generated images are not close enough with the original

images, when compared with the DCGAN model (with batch size 4), which produces

lower average cosine distance and better F1 score. To visually support that DCGAN

model with batch size 4, the generated images are shown in Figure 2.6. It is observed

from Figure 5 that the images generated by the DCGAN model with batch size 4 are

closer to the original image.

Each generated image is compared with all the original proliferative images in the

dataset using cosine distance. The minimum cosine distance gives information about

the generated image being similar to an original image. It is found that the generated

images are similar to different varieties of original images within the same class. Hence,

the generated model captured the intraclass variation.
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Chapter 4

Conclusion and Future Work

In this work, the importance of CNN in medical image classification is proved using

two different applications.

• Comet Assay Damage Detection using CNN based Deep Learning Ap-

proach: The comet classification using CNN based deep learning approach is

experimented and achieved a promising result with 0.9045 as f1-score. The work

can further be improved on hypertuning the parameters to increase the f1-score.

This may help researchers to go for further analysis on the effect of genotoxicity

based on number of correctly classified damaged comets. The proposed model is

also incorporated in a software tool and validated using different test dataset.

• Analysis of Adversarial based Augmentation for Diabetic Retinopathy

Disease Grading: Data imbalance is handled by the synthetic generation of

images for the classification of Diabetic retinopathy grading from fundus images.

Furthermore, a novel method on analysing the efficiency of generated images is

also proposed based on the similarity between the original images and augmented
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images (original and generated images). This paper limits the improvement of the

classification accuracy by balancing only the highly imbalanced class (prolifera-

tive) as a base version model. The extension of this base work to all other classes

can improve the classification results. The possible future scope of the present

work includes the hyper-tuning of the DCGAN model used to generate synthetic

images and as well as the classification model.
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DNA damage analysis tool

• DNA damage analysis includes three different modules,

– Module 1: Detecting the valid comets from comet assay image

– Module 2: Classifying the valid comets as damaged or undamaged

– Module 3: Quantifying the damaged comets

• Module 1 and 3 were developed by my fellow friends Mr. Vyshnav M T and

Ms. Harini N

• All three modules were incorporated into a single tool and a web based beta

version application is created for end users to analyse the DNA damage from

comet assay image.
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Figure 4.1: Home page

Figure 4.2: Result page
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Abstract

ECG signal is one of the most reliable methods to analyze the cardiovascular system.

The main challenge lies in the analysis and categorization of different cardiac diseases.

Cardiac diseases can generally be classified into tachycardia and bradycardia. In liter-

ature, there are different deep learning architectures to detect various types of tachy-

cardia diseases such as atrial fibrillation, ventricular fibrillation, and sinus tachycardia.

Even though all types of tachycardia diseases have fast beat rhythm as the common

characteristic feature, existing deep learning architectures are trained with the corre-

sponding disease-specific features. Hence, the objective of the paper is to explore the

features learned by the model from the ECG signal for the detection of different tachy-

cardia diseases. For the detection of the different types of tachycardia diseases, we use

a transfer learning approach in which, the model is trained with one of the tachycardia

diseases and tested with all other tachycardia diseases such as ventricular fibrillation

and sinus tachycardia. The experiments are conducted using standard deep learning ar-

chitectures such as recurrent neural networks, long short-term memory, gated recurrent

unit, convolution neural network, and residual skip convolution neural network. The

results are analyzed using standard metrics called accuracy and sensitivity. The most

important factor that limits detection is the availability of instances of the diseased

condition. In the case of a low resource ECG signal data, deep learning cannot be

implemented. We address the problem of cardiac disease detection with less number of

samples from an ECG signal using a Chebfun. The Chebfun helps to retrieve the signal

information by signal approximation without making use of conventional handcrafted

features. With this feature of Chebfun, the study aims to give an interpretation of the

features learned by the model for cardiac disease prediction. The performance of the

Chebyshev features for cardiovascular disease detection is evaluated using the ICBHI

ix



2019 scientific challenge cardiovascular disease dataset and atrial fibrillation dataset.

The input to the classifier was the Chebfun coefficient which is extracted from the raw

signal. The evaluation metrics such as accuracy, precision, recall, and specificity are

used for measuring the performance of the proposed Chebfun features.
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Chapter 1

Introduction

Cardiovascular disease (CVD) is one that affects the heart and blood vessels. The

CVDs include coronary heart disease, rheumatic heart disease, etc. [1]. Risk of the

CVDs increase due to blood clots that are caused by the buildup of fat deposits in

the coronary arteries. According to the study conducted by WHO, an estimated 17.9

million people died due to CVDs in 2016 i.e 31% of all deaths worldwide [2]. The CVD

in a broader sense can be categorized into electrical disorder, circulatory disorder, and

structural disorder [3]. The electrical disorder is caused due to the malfunction of the

electrical system that synchronizes the heartbeat (e.g. arrhythmia). The circulatory

disorder is caused due to the high blood pressure and block in the coronary artery (e.g.

stroke or heart attack). The structural disorder is caused due to the damage in the

heart muscle or heart valves (e.g. cardiomyopathy).

Most of the people might have experienced irregular heart rhythms at some point in

their life. Arrhythmia is developed when there is an abnormality in electrical impulse

formation or transformation or abnormality in both [7]. Some of the arrhythmias are

a threat to life [3]. When the heart beats are slower than the normal beats (<50bpm)

1



it is called bradycardia or bradyarrhythmia. In such cases, the blood pressure cannot

be controlled and the patient will faint which leads to death. Similarly, when the heart

beats faster than the normal beats (>100bpm) it is called tachycardia or tachyarrhyth-

mia. This may lead to pass out and sudden death [4]. As arrhythmias are one of the

main causes of mortality, detection of the arrhythmias at the early stage has acquired

great importance in recent years. Tachycardia and bradycardia can be classified into

different types based on their origin. The different types of tachycardia include ven-

tricular fibrillation (VF), long QT syndrome, premature ventricular contractions, atrial

flutter (AFL), supraventricular tachycardia, atrial fibrillation (AFib), sinus tachycar-

dia (ST) and Wolff-Parkinson-White syndrome [8]. The different types of bradycardia

include sinus bradycardia (SB), sinus pause or sinus arrest, sick sinus syndrome, etc

[9, 10].

As the risk of heart disease is high, the detection of disease must be accurate. There

are different techniques that prevailed in the detection of coronary heart diseases. Some

of the techniques are an electrocardiogram (ECG), Holter monitoring, echocardiogram,

stress test, cardiac catheterization, cardiac computerized tomography (CT) scan, and

cardiac magnetic resonance imaging (MRI) [11]. Among the above-mentioned tech-

niques, ECG based analysis is the most commonly used practice to diagnose cardiac

disease. An ECG signal is a record of electrical communication of the heart. ECG

signal monitoring is a non-invasive technique. ECG signals are recorded by placing

small electrodes in the legs, arms, and chest. Cardiac disease is detected through the

analyses of variation in the morphology of the ECG signal. The characteristic feature
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of a normal ECG signal during one cardiac cycle is the P-wave followed by the QRS

complex continued by a T-wave [12, 13]. The sample of the normal ECG signal is shown

in Fig 1.1 The intervals between the waves P-QRS-T varies when the person is affected

Figure 1.1: Normal ECG Signal [14]

by the disease. The variation of the ECG signal based on the characteristic shape and

interval helps the experts in disease diagnosis. However, analysis of the ECG is a com-

plex procedure because the experts should consider various factors such as age, gender,

previous health condition, etc. Along with this, the number of patients a doctor would

see during a day is also very high and so, it is also prone to error. To make ease of this

task, an automatic expert system to diagnose the cardiac disease is preferable.

Automation in the expert system aims to make an intelligent system that can au-

tomatically detect disease. Advancement in the field of artificial intelligence made

automation in expert systems possible [15]. Conventional methods require feature ex-

traction that is specific for the disease from the raw signal. The model should be fed

with optimal data. The model trained with less amount of data shows lesser perfor-

mances due to overfitting. A deep learning-based model in contradiction to the machine
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learning model can learn the required feature by itself [5]. In the case of cardiac disease,

each of the tachycardia and bradycardia disease contains features, which have disease-

specific variability. Fast beating rhythm is common for all the tachycardia diseases. In

case of the atrial fibrillation (AF) and ventricular fibrillation (VF), the distinct feature

that makes them distinct from another tachycardia disease i.e. sinus tachycardia (ST)

dataset is the absence of the P-wave. The VF has the presence of the fibrillatory waves

in the QRS baseline [8, 9, 10]. The deep learning model is expected to study different

disease-specific features for the detection of different diseases. Explainable AI is the field

that has gained more popularity recently. Explainable AI helps to interpret information

learned by deep learning or machine learning models. It tries to interpret the reason

for the decision made in the black box of neurons. This interpretability helps to im-

prove performance in various fields of artificial intelligence. In the disease classification

problem, we may not exactly know what the model learns. In the case of tachycardia

disease, it is expected to learn the fast beat rhythm. The different types of tachycardia

diseases such as AF and VF which do not contain specific P-wave segments are different

from ST which have distinct P-wave segments. Other features in the ECG signal that

make AF different from the other tachycardia dataset is the presence of the fibrillatory

waves in the baseline of the QRS complex. VF also has the fibrillatory waves in the

baseline of ECG. But more commonly, the ECG of VF is irregular and all segments (P,

QRS, and ST) are distorted. One distinct feature used for the identification of ST is

the presence of positive upright P-wave before the QRS complex. Other segments such

as QRS and ST have normal morphology [30, 31, 32]. The patterns of cardiac diseases
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are drastically changing nowadays. ECG is the most reliable method for the detection

of these variations in the diseases. The distinct features of the cardiovascular diseases

are captured in the QRS complex, P-wave, and T-wave components of the ECG signal.

The ECG is the record of the electrical activity of the heart and thus ECG could cap-

ture all anomalies that can happen to the cardiac activities. Thus leaves the trace of

the abnormal activities in its ECG structure.In most medical scenarios the availability

of samples of the diseased condition is less thus we will not get enough data samples

for the proper training of the model. In such cases in which there is less availability of

data samples, there is a requirement of capturing the proper disease-specific features

that are best suitable for the detection of the diseases. The proposed method aims to

interpret the features learned by the deep learning model for the detection of different

cardiac diseases. In the case of the ECG dataset with low resources, the study aims to

find a suitable feature for the better detection of cardiac disease and to interpret the

features learned by the machine learning model.

1.1 Literature Survey

Arrhythmia is the most dangerous cardiac disease which can be life-threatening be-

cause of its abnormal heart rate. Various studies have been conducted in this field for

the detection of different types of arrhythmia, which is generally classified as tachy-

cardia and bradycardia. Rajendra et.al [6] proposed an automatic system to classify

different segments of an ECG signal. The proposed method used a convolution neural

network which classified the data into four classes namely atrial fibrillation, ventricular
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fibrillation, atrial flutter and normal. The model was able to achieve an accuracy of

92.50%, sensitivity of 98.09% and specificity of 93.13%. Wang et.al [16] performed a

novel short time multi-fractional approach to classify atrial fibrillation, ventricular fib-

rillation, and ventricular tachycardia. With a fuzzy Kohonen classifier, the proposed

method achieved an accuracy higher than 97%. Martis et.al [17] used the discrete

cosine transform together with independent component analysis (ICA) as a dimension-

ality reduction approach. K-nearest neighbor algorithm based classifier has been used

to classify diseases such as atrial fibrillation and atrial flutter from normal ECG beats.

The method acquired an accuracy of 99.45%. A higher-order spectra method was pro-

posed by Martis et.al [18] for rectifying the problem due to high nonlinearity in the

ECG signal and compared two higher-order methods for classification of the 3 diseases

namely atrial fibrillation, atrial flutter and normal. This method obtained an accu-

racy of 97.65% and a predictive value of 99.53%. Khadra et.al [19] used higher-order

bi-spectral analysis for classification of arrhythmias such as Atrial fibrillation (AF),

Ventricular fibrillation (VF) and Ventricular tachycardia (VT) with respect to normal

(NR) ECG. Sensitivity values of 91.7%, 81.8%, 83.3%, and 100 % were obtained for

VF, VT, AF, and NR respectively. Li et.al [20] used a support vector machine-based

method for the classification of VF and VT. The proposed method achieved an accuracy

of 96.3%.

Sujadevi et.al [26] proposed recurrent neural network-based atrial fibrillation detec-

tion. The work made use of architectures such as a recurrent neural network (RNN),

long short term memory (LSTM) and gated recurrent unit (GRU) for the real-time
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detection of AF which gained accuracies of 95%, 100%, and 100% respectively. Ki-

ranyaz et.al [27] proposed a 1-dimensional convolution neural network (CNN) based

adaptive method for individual specific ECG signal classification. The method was

able to show reliable performance in the classification of ventricular ectopic beats and

supraventricular ectopic beats. Kachuee et.al [23] used deep learning architecture for

the classification of five different classes of arrhythmia and the approach gained an accu-

racy of 93.4%. Further authors have used the transfer learning approach because of the

less availability of data. Transferred knowledge from the classification of arrhythmia is

used to classify ECG signals with and without myocardial infarction with an accuracy

of 95.9%. Gopika et.al [28] further showed an improved accuracy from 95.9% to 99%

using the features proposed by the Kachuee et.al [23]. From the literature, it is evident

that there are various approaches used for the efficient classification of different types

of tachycardia disease. The different types of tachycardia diseases are atrial fibrillation,

ventricular fibrillation, and sinus tachycardia (AF, VF, and ST) which have the fast

beat rhythm as a common feature. In the previous works, even though AF, VF, and ST

have a common feature, the models are trained with disease-specific ECG signals for

detection of the above mentioned different types of tachycardia diseases. The previous

studies lack the interpretation of the features learned by the model. The proposed work

aims to interpret the features learned by the model for cardiac disease detection.

Various studies have been conducted in the field of cardiac disease detection, par-

ticularly in the detection of atrial fibrillation. The 2017 PhysioNet CinC challenge

was conducted to classify the atrial fibrillation (AF) data from normal and other noisy
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data. Many teams took part in the challenge in which, four teams had shown equal and

better score of 0.83 than other teams. Teijeiro et.al [38] used abductive interpretation

to derive the handcrafted features and the sequence information from the ECG signal.

The features are fed into the embedded recurrent neural network for the classification.

Datta et.al [39] proposed a two-layer cascaded binary classifier for the classification of

normal, AF and other rhythms. The real classification happens in the second layer

of binary classifier before that the records are intermediately classified to normal and

others, and AF and noisy in the second layer. Zabihi et.al [40] used a random forest clas-

sifier to classify 150 features chosen from 491 handcrafted features into normal, AF and

other rhythms. Hong et.al [41] combined the features extracted using the deep neural

networks and extracted features from significant waves for the classification of normal,

AF, noisy, and other signals. They used an ensemble classifier for the classification.

Kropf et.al [44] proposed a method combining the machine learning and conventional

signal analysis approach. They analyzed the different architectures and shown that

a gradient boosted tree model is better than the random forest for AF classification.

Rizwan et.al [45] used a machine-learning algorithm to classify the feature extracted

samples from the ECG signal. Together with the dimensionality reduction technique

and sparse coding they used an ensemble decision tree as the classifier. Kamaleswaran

et.al [42] proposed a 13 layer deep convolutional neural network-based approach for the

classification of the normal, AF, noisy, and other signals. The method also includes the

effect of the influence of hyperparameters on model performance. Plesinger et.al [43]

proposed an ensemble of convolution neural network and bagged tree for the classifica-

8



tion of Holter ECG signal into four classes (Normal, AF, other arrhythmia and other

noisy samples).

A deep residual skip convolution neural network (RSCNN) was proposed by Kachuee

et.al [35] for the classification of arrhythmia and used transfer learning to extract in-

formation learned by the model to classify the myocardial infarction. Gopika et.al

[46] have shown performance improvement for the above-given method by retraining

the network. Arrhythmia is a disease characterized by its irregular heartbeat rhythm.

Atrial fibrillation is one of the types of arrhythmia. Through this knowledge, Gopika

et.al [37] used the RSCNN for the classification of AF data into normal and abnor-

mal using the feature extracted samples extracted from the ECG signal proposed by

Andreotti et.al [33]. However, it resulted in minimal performance in the case of AF

classification. Gopika et.al [37] used other deep learning models such as long short term

memory (LSTM), gated recurrent unit (GRU), recurrent neural network (RNN). All the

above-mentioned architectures are trained for 1000 epochs and RSCNN is trained for

75 epochs. In the existing work [37], all the other deep learning models have shown bet-

ter performance when trained with a higher number of epochs but the RSCNN model

achieved only minimal performance even though it has comparatively less number of

learnable parameter. Thus the proposed work also aims to improve the performance of

the AF classification using RSCNN by hyperparameter tuning.

Various conventional feature extraction is available for retrieving the features from

the ECG. At the initial stage, Jiapu Pan And Willis J. Tompkins [51], proposed the

real-time QRS detection algorithm in which they acquired 99.3% accurate QRS com-
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plex detection for 24 hours MIT/BIH arrhythmia database. Desai et.al [52] proposed

a discrete wavelet transform (DWT) for denoising the signal and independent com-

ponent analysis (ICA) as a dimensionality reduction technique using support vector

machine (SVM) classifier for arrhythmia classification. In addition to this, they used

the Pan-Tompkins algorithm for R peak detection. The SVM quadratic kernel provides

the highest classification accuracy of 98.4% and the highest kappa coefficient of 0.9520.

Kalidas et.al [53] proposed real-time beat detection using stationary wavelet transform

along with adaptive thresholding the method was evaluated on MIT–BIH arrhythmia

database, QT Database and American Heart Association (AHA) database. The al-

gorithm acquired sensitivity (SE) of 99.88% and a positive predictive value (PPV) of

99.84% on the MIT-BIH arrhythmia database. The algorithm also gained a sensitivity

of 99.80% and PPV of 99.91% on the AHA database and sensitivity of 99.97% and PPV

of 99.90% on the QT database. Kiranyaz et.al [54] proposed an adaptive implementa-

tion of 1-D convolutional neural networks (CNNs) for the classification of arrhythmia.

The input of the model is the beat segmented ECG signals using R peak detection.

The method acquired less computational complexity, high speed, and it combined the

two major processes of feature extraction and classification in machine learning. They

utilized the MIT-BIH Arrhythmia dataset on this approach. Xia et.al [55] Proposed

a 2D CNN for the detection of Atrial fibrillation. They used the short-term Fourier

transform (STFT) and stationary wavelet transform (SWT) for converting the 1D fea-

tures to 2D features. The MIT-BIH atrial fibrillation (MIT-BIH AFIB) data set was

used for the performance evaluation of this approach. The proposed method does not
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require the detection of P or R peaks or the extraction of handcrafted manual features

for cardiac disease detection. 2D CNNs with the input based on STFT has gained a

sensitivity of 98.34%, a specificity of 98.24%, and accuracy of 98.29% and DCNNs with

the input based on SWT has acquired sensitivity of 98.79%, a specificity of 97.87%,

and accuracy of 98.63%. In all these scenarios the cardiac disease is detected using the

model trained with more numbers of samples. In most conventional feature extraction

techniques, they capture the peak information. It cannot be generalized that the car-

diac abnormalities are captured only at the peaks. The cardio disease can change the

structural morphology of the ECG signal. But in most cases, the conventional feature

extraction technique fails to capture the structural variation that is continuous in na-

ture and that can contribute to the identification of disease. To tackle the problem of

lesser samples for cardiac disease detection and to interpret the features learned by the

model, we propose the Chebyshev based feature extraction technique.

1.2 Problem statement

In the literature, there are various methods used for cardiac disease detection. In

most cases, interpretation for the detection by the respective models is also missing.

Hence the present work establishes the concept of explainable AI. The objective of

the present work is to explore and analyze the features that the model has learned

for the detection of tachycardia diseases. As an inflow work the current work also

aims to improve the accuracy of the atrial fibrillation classification using the RSCNN

model by hyperparameter tuning. As it shows minimum performance than any other
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architecture in the classification of atrial fibrillation [5]. The deep learning models

are not suggestable in cases in which the number of ECG samples are less. Thus the

proposed work aims to reckon a suitable feature for the conventional machine learning

algorithm and to interpret the feature learned by the model for the detection using

Chebyshev features.

1.3 Objectives

• To interpret the features learned by the model for the detection of tachycardia

diseases such as atrial fibrillation, ventricular fibrillation and sinus tachycardia

from the ECG signal.

• To find the best suitable model for cardiac disease detection among the deep

learning models such as RNN, LSTM, GRU, CNN and RSCNN.

• To improve the performance of RSCNN for the detection of atrial fibrillation.

• To check the possibilities of using the Chebyshev features for cardiac disease

detection instead of the conventional features in case of less availability of ECG

samples.

• To analyze the variation of features captured by the model in case conventional

features and the Chebyshev features using less number of ECG sample.

• To find the best suitable model for cardiac disease detection in machine learning

models such as SVM, logistic regression , decision tree and adaBoost.
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The chapter is organized as follows: Section 2 describes the background information

of the network architecture Section 3 describes the proposed work, and the thesis is

concluded in section 4.

13



Chapter 2

Background

2.1 Recurrent Neural Network

Recurrent neural network is very popular neural network because of it’s ability to

store the previous state. It is also known as RNNs. It’s widely used in different

fields such as time series modelling, machine translation, speech recognition, generating

sequences. RNNs work similar to the feed forward networks with an additional capacity

of remembering the things they have learnt from the prior input for predicting the

output. RNNs have no limitation in the length of input and output sequence.

Fig 2.1 shows the RNN module and its expansion of RNN in time sequential order.

Here the X is the input, Z is the output, h is the hidden state and Wxh is the weight

at the inputs, Whh is the shared weights at the output.This shows that the weights are

shared across time steps. RNN learns the time patterns and computes the next time

stamp from the previous and present time step. The loop in the Fig 2.1 allows the

information to pass from t to t+1. The RNN has a disadvantage of vanishing gradient

problems in case of long time step dependency. This vanishing gradient problem is

14



Figure 2.1: The left shows the RNN module and right shows the expansion of RNN in
time sequential order [66].

addressed in Long short term memory (LSTM).

2.2 Long Short Term Memory

The correlation between the input Xt, previous hidden state ht-1information and cur-

rent hidden state ht are maintained by using a simple tanh function. Thus creates a

vanishing gradient problem. The LSTM maintains this correlation by using a memory

unit. The previous information is stored in the memory block.

Fig 2.2 shows the unit of the LSTM. Along with memory blocks LSTM contains 4

gates. An input and output gate which regulates the information to be passed across the

time step. A forget gate which nullifies unnecessary past value. The input modulation

gate regulates the information to be scaled in the input gate.
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Figure 2.2: An unit structure of LSTM, including 4 gates: input modulation gate, input
gate, forget gate and output gate.[66]

2.3 Gated Recurrent Unit

Gated Recurrent Unit(GRU) is another version of RNNs which is built to decrease the

computational complexity of LSTM. Fig 2.3 shows a unit of GRU. It mainly contains

4 gates: the update gate, the reset gate, the current memory unit, and the final mem-

ory unit.The update gate is responsible for updating the weights and eliminating the

vanishing gradient problem. As the model can learn on its own, it will continue to

update information to be passed to the future. The reset gate acts in an opposing way

by deciding how much of the past information should be forgotten, given the current

state.
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Figure 2.3: An unit structure of GRU[66].

2.4 Residual Skip Convolution Neural Network

Convolutional neural network is one that takes full hand in the field of computer vision.

Main block of convolution neural networks is the convolution layer. Convolution takes

place by striding the convolutional filter along the each pixel of images/ each sample

of signal. This element wise multiplication creates the feature maps of the input. The

number filter determines the portion of the input the filter gets covered which is called

as the receptive filter. The number of strides determines the time steps at which the

filter moves.The output dimension of convolutional operation can be determined using,

output = (Input− Filtersize+ 2 ∗ Zeropadding)/Stride+ 1

The convolution layer is followed by an activation layer and which is then followed
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by a Pooling layer. Most commonly used activation function is the rectifier linear

unit(Relu). There are 3 types of pooling Max pooling, Average pooling and min pooling.

This helps to reduce the dimension of the input. The activation function eliminates the

vanishing gradient problem. Fully connected layer with an Soft-max/Sigmoid completes

the convolution neural network The residual connections, skip the in between block and

feed the input to the next block. The skip connection helps the model to take the input

information without any loss and thus avoiding degradation problems. Skip connections

also helps the model to learn deeper with equal number of parameters.
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Chapter 3

Proposed Work

The proposed work aims to interpret the features learned by the model.To explore our

objective state-of-art architectures of deep learning such as LSTM, RNN, GRU, CNN,

and RSCNN [23, 26] are implemented in our present work. We considered different

types of tachycardia diseases such as atrial fibrillation, ventricular fibrillation, and sinus

tachycardia, which have fast beat rhythm as the common characteristic feature is used

for the evaluation. To achieve this objective we use the concept of transfer learning. In

our present approach, the model trained with one of the tachycardia diseases is tested to

detect other different types of tachycardia diseases unseen by the model during training.

In case of ECG dataset of lesser samples the proposed work aims to find the suitable

feature extraction technique for interpretation and proper classification of the cardiac

diseased signal using chebyshev features
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3.1 Explainable AI for Heart Rate Variability in

ECG Signal

3.1.1 Data set description

In this work, ECG signal datasets that are publicly available in the Physionet database

[21] are used. Dataset for atrial fibrillation disease is taken from the AF classification

2017 PhysioNet CinC challenge which is referred to as the tachycardia dataset one (AF:

TD1). The ventricular fibrillation disease dataset which is referred to as the tachycardia

dataset two (VF: TD2). This dataset is retrieved from two sources namely Creighton

University ventricular tachyarrhythmia (VF: TD2-A) and MIT-BIH ventricular ectopy

(VF: TD2-B). MIT ventricular ectopy dataset has ECG signals collected from two

leads. Dataset for sinus tachycardia (ST: TD3) is taken from the MIT-BIH arrhythmia

database. The number of records of raw ECG signal and the corresponding number of

samples based on feature extraction for all the above-mentioned datasets is presented

in Table 3.1.

Each sample is a feature vector with a dimension as 169 [22]. This feature vector

contains information related to heart rate variability indices and signal quality indices.

The heart rate variability (HRV) indicates the changes in the heartbeats per minute.

Time-domain features, frequency-domain features, non-linear features along with sig-

nal quality indices constitute the feature vector of length 169 [29]. The time-domain

features give the fluctuations observed in the HRV over an interval of time. The time

intervals may range from 2 minutes to 24 hours. The frequency-domain features give the
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Table 3.1: Dataset Description.

Dataset
Number of records
of raw ECG signal

Number of feature
extracted samples

Atrial fibrillation(AF: TD1)
(AF dataset CINC Challenge 2017)

8528 64767

Ventricular fibrillation (VF: TD2-A)
(Creighton University Ventricular

Tachyarrhythmia Database)
33 1426

Sinus tachycardia (ST: TD3)
(MIT-BIH Arrhythmia
database of PhysioNet)

59 118

Ventricular fibrillation (VF: TD2-B)
(MIT-BIH Malignant

Ventricular Ectopy Data base)
22 945

energy information of the ECG signal. The non-linear features indicate the complexity

and nonlinearity within interbeat intervals of the ECG signal. Signal quality indices

represent the segment-wise features of the ECG signal [29]. Signals are separated as

segments of 10 seconds with an overlap of 50% for constructing feature extracted sam-

ples [22] so that no pieces of information are lost. The use of these feature extracted

samples reduces the high computational requirement for the deep learning approach.

In this, only 70% AF data (AF: TD1) is used for training.

3.1.2 Methodology

In this work, we propose a transfer learning approach for the detection and interpre-

tation of the ECG signal. In this approach, the models are trained with one of the

tachycardia diseases and tested with all other tachycardia diseases unseen by the model

during training. Tachycardia diseases have fast beat rhythm as their common feature.

This approach aids to interpret the common characteristic feature of ECG signals cor-
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Figure 3.1: Proposed methodology for the detection of tachycardia diseases and for the
interpretation of features learned by the model

responding to different types of tachycardia diseases learned by the model. The overall

workflow of the methodology for the interpretation of the features learned by the model

is shown in Fig 3.1. The proposed method consists of the following steps. Initially, the

models are trained with the atrial fibrillation dataset. The AF dataset contains both

abnormal and normal cases. Then the trained models using AF dataset are tested with

other tachycardia datasets such as atrial fibrillation (AF: TD1), ventricular fibrillation

(VF: TD2-A and VF: TD2-B) and sinus tachycardia (ST: TD3) separately. The state of

the art deep learning architectures implemented in the present work are RNN, LSTM,

GRU, CNN and RSCNN [23, 26, 27].

The benchmarks of deep learning architectures such as RNN, LSTM, GRU, CNN,

and RSCNN [23, 26, 27] are contemplated for the study. Details about recurrent neural

networks are given in Table 3.2. The input layer of each model is modified to 169x1.

As the input signal has a feature vector of size 169x1. Recurrent neural networks

considered are RNN, LSTM, GRU which have one hidden layer with 64 units. The

second layer (output layer) is dense with the number of neurons same as the number of

classes considered. Atrial fibrillation dataset (AF: TD1) which is considered for training
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have two classes i.e.the one without atrial fibrillation (Normal: Class 0) and the other

with atrial fibrillation (Abnormal: Class 1). So, the final dense layer consists of two

neurons with a sigmoid activation function.

Table 3.2: Architecture details of RNN, CNN, LSTM networks

Architecture RNN LSTM GRU
Input layer 169x1 169x1 169x1

Recurrent layer RNN LSTM GRU

Output layer
Dense layer
(Sigmoid)

Dense layer
(Sigmoid)

Dense layer
(Sigmoid)

The number of learnable parameters varies according to the chosen architecture of

the model. For the recurrent neural networks the computation of number of learnable

parameter is given by

paramRNNs = f × [ns(ns+ i) + ns] (3.1)

where f is the number of fully connected neural networks, ns is the number of neurons

in the hidden layer and i is the input size. In the case of RNN number of fully connected

neural networks is 1, for GRU it is 3 and for LSTM it is 4. For dense layers, the number

of the learnable parameter is computed by

paramDense = [ns× i+ b] (3.2)

where b is the bias. Details of the CNN model is shown in Fig 3.2. The CNN model

contains a convolution layer with 64 filters of size 3 with stride 1. This convolution layer

is accompanied by ReLU (Rectified linear unit) activation function. The output from

the convolution layer is mapped into nonlinear output using the activation function for
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avoiding the vanishing gradient problem. The model also contains two dense layers:

one with 128 neurons and other with 2 neurons which serve as the output layer with

a soft-max activation function. Number of the learnable parameter of the convolution

neural network is given by

paramCNNs = nf × fs+ b (3.3)

where nf is the number of filters, fs is the filter size and b is the bias.

Figure 3.2: 1-D Convolution neural network

Details of the residual convolution neural network (RSCNN) architecture is shown

in Fig 3.3. RSCNN contains 13 weighted layers which include 11 convolution layers and

2 dense layers. The first layer is the input layer of size 169x1 which is the same as the

size of the feature vector. Convolution layer has 32 filters with 3 as the filter size in each

layer. The network has residual blocks. The residual blocks contain two convolution

layers with the ReLU activation function. Succeeded by a max-pooling layer for the
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Figure 3.3: Residual Convolution neural network

dimensionality reduction. A skip connection is also included in the residual block. As

shown in Fig 3.3, these residual blocks are repeated 5 times. The dense layer of 32

neurons is included after the residual blocks. The final output layer is a dense layer

with 2 neurons with a soft-max activation function.

The number of learnable parameters computed for all the benchmark architectures

is tabulated in Table 3.3.

Table 3.3: Number of learnable parameters computed for RNN,LSTM,GRU, CNN and
RSCNN

Architectures Number of learnable parameters
RNN 150170

LSTM 60,290
GRU 45,250
CNN 60,290

RSCNN 54,914
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Table 3.4: Experimental results for AF CINC 2017 dataset class 0 (AF: TD1 class 0)

LSTM GRU RNN CNN RSCNN
Accuracy % 95.77 97.87 96.87 97.13 97.92
Sensitivity 0.96 0.98 0.97 0.98 0.98
F1 score 0.97 0.98 0.98 0.97 0.98
Specificity 0.957 0.96 0.96 0.97 0.97

Table 3.5: Experimental results for AF CINC 2017 dataset class 1 (AF: TD1 class 1)

LSTM GRU RNN CNN RSCNN
Accuracy % 88.03 87.25 90.34 78.14 83.93
Sensitivity 0.88 0.87 0.90 0.78 0.84
F1 score 0.82 0.87 0.86 0.81 0.86
Specificity 0.88 0.90 0.90 0.78 0.83

3.1.3 Training and testing

All the benchmark deep learning architecture (RNN, LSTM, GRU, CNN, and RSCNN)

are trained with 70% of atrial fibrillation data (AF: TD1) for 1000 epochs with the

batch size 1000 samples for each architecture. The models are tested with 30% of atrial

fibrillation data and also with other tachycardia datasets such as ventricular fibrillation

(VF: TD2-A and VF: TD2-B) and sinus tachycardia data (ST: TD3).

Table 3.6: Experimental results for CU-ventricular tachycardia dataset (VF: TD2)

LSTM GRU RNN CNN RSCNN
Accuracy % 82.75 77.84 90.88 74.89 68.93
Sensitivity 0.83 0.78 0.91 0.75 0.69
F1 score 0.91 0.88 0.95 0.86 0.82
Specificity 0.83 0.77 0.90 0.75 0.68
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Table 3.7: Experimental results for Sinus Tachycardia (ST: TD3)

LSTM GRU RNN CNN RSCNN
Accuracy % 27.97 22.88 23.73 26.50 21.19
Sensitivity 0.28 0.23 0.24 0.26 0.21
F1 score 0.44 0.37 0.25 0.42 0.35
Specificity 0.28 0.23 0.24 0.26 0.21

Table 3.8: Experimental results for MIT-BIH Malignant Ventricular Ectopy
Database(VF: TD21-Lead 1)

LSTM GRU RNN CNN RSCNN
Accuracy % 92.17 90.69 94.71 88.67 76.61
Sensitivity 0.92 0.91 0.95 0.89 0.77
F1 score 0.96 0.95 0.97 0.94 0.87

Specificity 0.92 0.91 0.95 0.88 0.77

Table 3.9: Experimental results for MIT-BIH Malignant Ventricular Ectopy
Database(VF: TD21-Lead 2)

LSTM GRU RNN CNN RSCNN
Accuracy % 93.86 90.16 94.18 88.67 80.32
Sensitivity 0.94 0.90 0.94 0.89 0.80
F1 score 0.97 0.95 0.97 0.94 0.89

Specificity 0.94 0.90 0.94 0.88 0.80

Figure 3.4: Confusion matrix for GRU and RNN model tested with AF: TD1 data
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Table 3.10: Variation in morphology of ECG signal for different type of tachycardia
diseases.

Disease P wave
QRS

complex
T

segment
Heart
Rate

Other features

Atrial
fibrillation

Absent
Not

effected
Not

effected
>100

beats/min
Presences of fibrillatory

waves in the baseline
Ventricular
fibrillation

Absent Absent Absent
>100

beats/min
Presences of Irregular

waves
Sinus

Tachycardia
Not

effected
Not

effected
Diminished

>100
beats/min

Similar to normal
sinus rhythm

Table 3.11: Fivefold cross-validation accuracy for CNN and RSCNN

Models Accuracy Precision Recall F1-Score
CNN (Fivefold) 95.48+-0.39% 0.81 0.86 0.83

CNN (Single Fold) 95.32% 0.851 0.781 0.815
RSCNN (Fivefold) 94.96+-0.19% 0.83 0.78 0.80

RSCNN (Single Fold) 96.08% 0.92 0.91 0.91

Table 3.12: Training and testing time for all the deep learning models used in the
present work.

LSTM GRU RNN CNN RSCNN
Training Time

(HH.MM.SS) (AF-TD1)
08:09:00. 11:41:54. 01:46:09. 06:48:51. 01:31:04.

Testing Time
(Seconds) (AF-TD1)

1.47 0.74 0.15 4.22 11.29

Testing Time
(Seconds) (CU VF -TD2)

0.52 0.43 0.23 0.31 0.71

Testing Time
(Seconds) (ST-TD3)

0.01 0.02 0.01 0.04 0.03

Testing Time
(Seconds) (VF-TD21- lead 1)

0.05 0.03 0.03 0.11 0.23

Testing Time
(Seconds) (VF -TD21- lead 2)

0.05 0.04 0.03 0.12 023

28



Table 3.13: Performance comparison of the present work with respect to state of art
methods for the AF-TD1,VF-TD2,ST-TD3 and VF-TD21 dataset.

Accuracy Sensitivity F1 score Specificity
Proposed Methodology

(AF-TD1)
96.47 0.93 0.92 0.90

J. Chanthercrob et.al
(AF -TD1)

- 0.97 - 1.00

Gopika et.al
(AF -TD1)

96.47 0.93 0.92 0.90

Proposed Methodology
(CU VF-TD2)

90.88 0.91 0.95 0.90

Boreiko et.al
(VF-TD2)

- 0.83 - -

M. A. Sohail et.al
(VF-TD2,VF-TD21)

98.03% - - -

Proposed Methodology
(ST-TD3)

27.97 0.28 0.44 0.24

Gopika et.al
MIT arrhythmia (N,S,V,F,Q)

97.94 0.98 - -

Proposed Methodology
(VF-TD21-lead 1)

94.71 0.95 0.97 0.95

Proposed Methodology
(VF-TD21-lead 2)

94.18 0.94 0.97 0.94

Mohanty et.al
(VF-TD2/VF-TD21)

99.18 0.97 - 0.99

Table 3.14: Performance of the deep learning models towards the noisy signal in AF
-TD1 dataset

LSTM GRU RNN CNN RSCNN
Percentage of noisy signal
falling into Normal Class

78.66% 78.76% 72.99% 89.17% 73.35%

Percentage of noisy signal
falling into Abnormal Class

21.34% 21.24% 27.01% 10.83% 26.65%
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Figure 3.5: Confusion matrix for RNN model tested with VF: TD2-A, LSTM model
tested with ST: TD3 data,RNN model tested with VF: TD2-B data for lead I and lead
II

3.1.4 Result and analysis

Accuracy,sensitivity,F1-score and Specificity are the evaluation metric used for the per-

formance assessment of all the deep learning architectures implemented in this work. In

the biomedical field, the sensitivity score has very high importance. Let’s consider the

condition of disease as a positive case and the normal as a negative case from the medi-

cal perspective. Hence, sensitivity is the measure of the ratio of actual positive detected

as positive. Since the disease unidentified is a threat to life, the sensitivity score is con-

sidered for the evaluation of the disease detection along with the accuracy.Specificity

measures the effectiveness of the to detect the normal cases. The measure of combined

precision and sensitivity score is incorporated in the F1-score. The confusion matrix

gives the exact idea about the number of samples that are correctly classified and miss

classified. The Four parameters used for the analysis of the confusion matrix are True

positive (TP), False positive (FP), True negative (TN) and False negative (FN). TP

represents the number of samples that are positive and predicted correctly as positive.

FP represents the number of samples that are negative and predicted wrongly as pos-
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itive. TN represents the number of samples that are negative and predicted correctly

as negative. FN represents the number of samples which is positive and predicted

wrongly as negative. The accuracy score, sensitivity, F1-score, and Specificity in per-

centage for the models tested with atrial fibrillation (AF: TD1) for class 0 and class

1, ventricular fibrillation (VF: TD2 and VF: TD21) and sinus tachycardia (ST: TD3)

dataset are tabulated in Table 3.4, Table 3.5, Table 3.6, Table 3.7, Table 3.16, and

Table 3.9 respectively. Class 0 represents the normal class and class 1 represents the

AF (abnormal class). The main purpose of the present work is to determine whether

the model trained on one type of tachycardia can detect other types of tachycardia

diseases. This is performed in order to interpret the common characteristics of ECG

signals that are affected by different types of tachycardia diseases learned by the trained

model. Hence, the model trained on AF: TD1 dataset is tested with AF: TD1, VF:

TD2-A, VF: TD2-B and ST: TD3.The feature specific differences between three types

of tachycardia diseases used in the present work is given in Table 3.18.

In atrial fibrillation data (AF: TD1) a total of 19430 samples were tested in which

16873 are class 0 and 2557 are class 1. For the normal class, the RSCNN model gained

an accuracy of 97.92% which is higher than other models and RNN gained an accuracy

of 90.34% which is higher than other models for abnormal class. While considering

the average accuracy including both classes, the GRU model has performed better than

other models with an accuracy of 96.47%. While considering the sensitivity score for the

abnormal class, RNN has gained a score of 0.90 which is higher than other models. Thus

for AF: TD1 RNN has performed better than other models in detecting the abnormal
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class. The confusion matrix for the GRU and RNN model is shown in Fig.3.4. The

diagonal elements in the figure represent the TP and TN number of samples.

In the case of ventricular fibrillation, CU ventricular tachycardia dataset (VF: TD2-

A) is used for the evaluation. The models are tested using 1426 samples of tachycardia

data. The RNN has acquired a percentage accuracy of 90.34% which is higher than

other models. Analyzing the sensitivity score of these models, we can understand that

RNN has a better score of 0.91 than other models. The confusion matrix for the RNN

model which is tested with VF: TD2-A is shown in Fig.3.5. From the figure, it is clear

that the number of TP samples is 1296.

For the validation of the above result, the second dataset of ventricular fibrillation

disease VF: TD2-B from the MIT-BIH malignant ventricular ectopy database was taken.

In this dataset, 945 samples of VF were tested on different models such as LSTM,

GRU, RNN, CNN, RSCNN. Among these, RNN has shown better performance with

an accuracy of 94.71% for the lead I ECG signal of VF: TD2-B. The RNN model has

gained the best sensitivity score of 0.95 when compared with other models. The RNN

has shown the same trend for VF: TD2-B lead II data with an accuracy of 94.18% and

a sensitivity score of 0.94. From the result acquired from VF: TD2-A and VF: TD2-B

dataset, it is clear that RNN had performed well for the detection of VF disease. The

confusion matrix of the RNN model of VF: TD2-B for the lead I and lead II is shown in

Fig.3.5. It shows that TP samples are 895 and 890 for the lead I and lead II respectively.

The next evaluation is done using tachycardia dataset three (ST: TD3) known as sinus

tachycardia. The models are evaluated against 118 samples of ST data. The model
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acquired sensitivities of 0.28, 0.23, 0.24, 0.19, 0.21 for models such as LSTM, RNN,

GRU, CNN, RSCNN respectively and also gained accuracies of 27.97%, 22.88%, 23.73%,

18.64%, 21.19% for LSTM, RNN, GRU, CNN, RSCNN respectively. From these values,

it is evident that the models were not able to detect the ST: TD3 disease. The confusion

matrix for ST: TD3 is shown in the second matrix of Fig.3.5. From the figure, it is

apparent that only 33 samples are TP samples and the remaining samples are miss

classified as TN. The performance evaluation in terms of F1-score and specificity shows

the same trend as that of accuracy and sensitivity.

From the analysis, we found that RNN has performed better than architectures such

as LSTM, GRU, and CNNs. The recurrent neural networks (RNNs) (i.e. RNN, GRU,

and LSTM) and convolution neural networks are well known for their performance in

biomedical applications. The RNNs have the ability to remember the previous time

step and use that information to predict the next. The various RNNs such as RNN,

LSTM, and GRU are different from each other due to the presences of gate such as

forget gate, input gate and output gate etc. The RNN is a simple feed-forward network

with a feedback loop. The LSTM and GRU have additional gates to avoid long term

dependency of the previous states. In the case of tachycardia disease detection using the

ECG signal, there is a possibility that the GRU and LSTM could miss the important

pieces of information while passing signal vectors through different gates. In RNN,

the memory cell has the ability to store all the information from the previous state,

thus gaining better performance than other architectures. While considering the CNN

architecture, the structural information is stored in the convolutional layer. When
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compared to RNNs it lacks the capacity to capture timely information. Therefore,

CNN could not perform better than RNNs.

The five fold cross-validation results for the CNN and RSCNN models trained with

AF-TD1 and tested with the same are shown in Table 3.21. From the results, we

analyze that the CNN model achieved approximately equal performances with that of

the single fold results. In the case of RSCNN, there is a slight decrease in performance

while taking an average performance of five fold testing. From the accuracy, we observe

that the RSCNN has a variation of +/ .19 % which makes it approximately equal to

the previous results achieved. Five fold results provide an validation of experiments

performed.

The time based analysis is incorporated for adding more details to the experiments.

The time based analysis includes the time taken by the model to get trained and the time

taken by the model to get tested. The time required for each model to get trained with

AF-TD1 dataset and get tested with AF-TD1, CU VF -TD2, ST-TD3, VF-TD21- lead

1, VF-TD21- lead 2 data samples is shown in Table 3.22. The LSTM, GRU, and CNN

networks are trained for 1000 epochs each. For the networks such as RNN, the model

is trained for 298 epochs and RSCNN the model is trained for 105 epochs. From the

experimental results, we observe that the RSCNN has taken the least time for training

as the number of epochs is less, compared to all other models. Then the second least

time is taken by the RNN model since it has the least number of learnable parameters

among other models. Even though the GRU has the second least number of learnable

parameters, it has taken much greater time than other models while comparing other
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models based on accuracy and number of learnable parameters. RNN has achieved an

accuracy of 96.87%, 90.34%, 90.88%, 94.71% and 94.18% for AF-TD1 class 0, AF-TD1

class 1, CU VF-TD2, MIT VF-TD21- lead 1 and MIT VF-TD21- lead 2 respectively.

RNN model have better performance than any other models in terms of accuracy and

time.

The comparison of the present work with respect to the current state art of method

is shown in Table 3.19. For the AF CINC challenge dataset(AF-TD1), CU Ventricular

fibrillation dataset (VF-TD2), MIT BIH Arrhythmia database(ST-TD3) and Malignant

ventricular Ectopy database (VF-TD21) respectively. From the results shown in Table

3.19, we could interpret that the current methodology was able to achieve comparable

performance with respect to the state of art methods. An exception was found in the

case of ST disease. This difference in the performance of sinus tachycardia is because,

the current methodology employs a model trained with AF disease to detect other

tachycardia diseases such as VF, ST. The model which is trained with AF was not

able to detect ST segments. The main feature of ST disease which is the upright P

waves is different from the AF and VF disease features. The features of ST don’t share

common feature distribution with the other tachycardia disease dataset (AF and VF).

The difference in feature distribution failed the model trained by the AF dataset to

detect ST disease.

In order to check the noise robustness, the model is tested with the noisy segments

from the AF CINC challenge dataset. These noisy segments are not annotated. The

results are tabulated in Table 3.20. All the deep learning models classify the majority
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of the noisy segments into the normal class. The expected result was the reverse, as

the noisy segments are considered the deviation from the normal class. This enforce

the direction of training the deep learning algorithms to detect multi-class with the

inclusion of unlabelled noisy segments along with the normal and abnormal. This can

be considered as the future scope of the present work.

From the experimental results and analysis, we observed that the model trained

with AF was able to detect VF and failed to detect ST. The expected results were that,

if the model has learned the fast beat rhythm, it must be able to detect the other types

of tachycardia diseases.From this, we were able to interpret that, even though AF, VF

and ST fall under the common disease type called tachycardia, the features learned by

the model were common to AF and VF which was not applicable to ST. The presence

of Upright P-wave is the characteristics of an ECG signal specific to ST disease. This

explains that the model just did not capture the fast beat rhythm, which is the coarse

level feature to detect all the three different types of tachycardia diseases. Instead, it

captured the disease specific feature, which differentiates the ST from AF and VF. This

analysis from the experiments conducted led to “Explainable AI”.

The findings based on the experiments conducted and the results obtained are given

below

• Among all the benchmark deep learning architectures implemented for the differ-

ent tachycardia disease detection, RNN was able to perform better based on our

proposed transfer learning approach.
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• Even though RNN was able to detect two types of tachycardia diseases namely

atrial fibrillation and ventricular fibrillation, it failed to detect sinus tachycardia.

This may be due to the absence of P-wave characteristics in the trained model

(using AF: TD1). ST has an up-right distinct P-wave that differentiates it from

atrial and ventricular fibrillation.

3.2 Performance Improvement of Deep Residual Skip

Convolution Neural Network for Atrial Fibril-

lation Classification

The proposed method uses a deep residual skip convolution neural network for the clas-

sification of the atrial fibrillation and normal ECG samples. The same atrial fibrillation

dataset from the CINC challenge is used for the study. The input of the RSCNN is

a feature vector of size 169 × 1. For training the CNN, we used Adam optimizer and

categorical cross-entropy as the loss function. The hyperparameters such as the number

of epochs and learning rates are tuned in such a way that the model was able to learn

the features perfectly. The proposed methodology is illustrated in Fig 3.6. The model

is trained with 70% of the AF dataset. The trained model is evaluated with 30% of the

AF dataset. The metrics such as accuracy, F1 score, precision, and recall are used for

the evaluation of the model.

3.2.1 Experimental Results

The number of epochs is fixed according to the performance of the model to classify AF.

The model was trained for 300 epochs and with a learning rate of 0.001 (default). The

37



Figure 3.6: Proposed methodology for performance improvement of DRSCNN for AF
classification

deviation of training accuracy and loss of the model concerning the epoch are shown in

Fig 3.7 and Fig 3.8.

Figure 3.7: The variation in accuracy according to the increase in number of epochs for
AF classification.

From Fig 3.7 and Fig 3.8, it is evident that the training loss decreased from infinity

to 0.07 till 105th epoch and the training accuracy increased from 0 to 97%. After 105th

epoch, the training accuracy decreased for a few epochs and again there is an increase

in accuracy till 227th epoch. Later, there is a steep decrease in accuracy. The training

loss doesn’t have any vigorous change after 105th epoch till 227th epoch. But after 227th
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Figure 3.8: The variation in loss according to the increase in number of epochs for AF
classification.

epoch, there is a steep steady increase in loss. This is due to the overfitting of the model

i.e., the model is trained more so that it has started to generalize all the given data. Such

cases affect the overall performance of the model. Thus the model weight in 105th epoch

which showed the best training accuracy of 97% and loss of 0.07 was used for testing.

The evaluation of the model efficacy is carried out using metrics such as accuracy and

weighted average F1 score, precision, and recall. The evaluation metric acquired by the

model together with the values acquired by the existing method is shown in Table 3.15.

The proposed model acquired an accuracy of 96.08% and weighted average F1 score of

0.96 which is higher than other prevailing methods. The confusion matrix containing

the true positive, false positive, true negative and false negative is shown in Fig 3.9.

From the confusion matrix, it is clear that the model classified 98% of the normal data

as normal (True negative) and 84% of the AF data as abnormal (True positive).

The receiver operating characteristics (ROC) and area under the curve (AUC) is
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Table 3.15: Evaluation metric results obtained for the AF classification using DRSCNN
and performance of previously existing method

Work Accuracy F1 score Recall Precision
Proposed 96.08 % 0.96 0.96 0.96

Gopika et.al[37] 50.00 % 0.67 0.50 0.25

Figure 3.9: Confusion matrix for AF classification obtained by hyper parameter tuning
of DRSCNN model.

Figure 3.10: ROC curve and AUC for AF classification obtained by hyper parameter
tuning of DRSCNN model

one another parameter that measures the efficiency of the model. In the ROC curve,

if the graph goes more towards the upper left corner it indicates better performance.

AUC is the area covered by the curve and it measures the quality of performance.
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Higher the area, better the performance. The ROC curve and AUC are shown in Fig

3.10. The AUC for the AF classification is 0.96. From the results, we understand

that the RSCNN model classified the AF data with 96% accuracy. The performance

comparison of RSCNN with the existing approaches is shown in Table 3.16 From the

table, it’s evident that the performance of the proposed approach is 4% higher than

the existing methods in the literature in the case of normal class classification and has

shown equal performance in case of classification of abnormal class.

Table 3.16: Performance comparison for the proposed method and the method imple-
mented in the literature for AF classification

Authors F1 score Normal F1 score AF
Proposed 0.98 0.86

Teijeiro et.al[38] 0.92 0.86
Datta et.al[39] 0.92 0.82
Zabihi et.al[40] 0.91 0.84
Hong et.al[41] 0.92 0.85

Kamaleswaran et.al[42] 0.91 0.82
Plesinger et.al[43] 0.92 0.82

Kropf et.al[44] 0.91 0.84
Rizwan et.al[45] 0.91 0.78

Gopika et.al (GRU)[37] 0.96 0.87
Gopika et.al (DRSCNN)[37] 0.33 0.00

Unlike the recurrent neural networks used by Gopika et.al [37] which was trained

for 1000 epochs, the present work attains the benchmark accuracy by training the

RSCNN network for just 105 epochs. The number of learnable parameters of RSCNN

is less than LSTM and the same in the case of GRU. Even though the number of

learnable parameters for RNN is less than RSCNN the number of epochs used to train

the RSCNN is lesser than the number of epochs used to train the RNN model. Hence
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the highlight of the present work is the attainment of benchmark accuracy using the

lighter model based on the number of learnable parameters and trained for less number

of epochs. This was feasible due to the beat segmented features containing the heart

rate variability in time and frequency domain existing in the literature [33].

3.3 Detection of Cardiac Disease for Less Number

of ECG samples using Chebyshev Coefficients

3.3.1 Chebyshev Interpolation System

A Chebfun is a function which represents every functions in an interval [-1,1]. Chebfun

is defined based on the fact that the smooth function can be symbolized by using

the polynomial interpolations in chebyshev points. The number of chebyshev points

are stored automatically to machine precision using an adaptive technique [14]. The

Chebfun system only stores minimum chebyshev points for representing a signal even

with a large number of samples. The chebyshev points are defined by

xj = −cos(jπ/N), 0 ≤ j ≥ N, (3.4)

The polynomial interpolant is defined as a unique polynomial at any data values at

the chebyshev points and a chebyshev series is defined as an expansion represented as

f(x) =
∞∑
n=0

akTk(x) (3.5)

ak is known as the chebyshev coefficients. Peculiarity of the Chebyshev is that we

will get a continuous function while using the chebyshev functions in the MATLAB.
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The chebfun of the signal ‘s’ is computed using the command

f = Chebfun(s) (3.6)

f is the cheb function then, the command

C = chebcoeffs(f) (3.7)

returns its chebyshev coefficient. The truncation of the valid coefficient are com-

puted by using the command

t = chebfun(f, trunc,m) (3.8)

m represents the number of the coefficients to which the function is to be truncated.

In the literature, the Cheb function (Chebfun) is used in the speech epoch extraction

purpose [56] and in the electrical system [57]. B.Ganga et.al [56] used the Chebfun for

the accurate epoch extraction of the telephonic speech signal. The proposed method

gained an improvement in performance by incorporating changes in the prevailed zero

frequency filtering by including Chebyshev interpolation method. Neethu Mohan et.al

[57] proposed a combination of variational mode decomposition and chebyshev interpo-

lation for the estimation of power system frequency and the amplitude.

3.3.2 Dataset Description

ICBHI 2019 scientific challenge cardiovascular disease dataset is used for this study [65].

The dataset contains both generalized normal and abnormal cardiac vascular disease

cases. The dataset contains 24 normal cases (negative cases) and 13 abnormal cases

(positive cases).
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3.3.3 Feature Extraction Technique based on Chebfun

The main feature that is considered for this study is the approximated signal that

is extracted from the original signal by using the Chebfun. The signal is initially

downsampled from the sampling frequency of 44100Hz to a sampling frequency of 250

Hz. The signal is then transformed into a Chebyshev function. From the Chebyshev

function the Chebfun coefficients are extracted. The main advantage of the Chebfun is

that we don’t need to consider the whole signal coefficients. The Chebfun provides the

truncated coefficients of the signal.The number of coefficients varies for each signal as a

number of samples for each signal are different. For making a uniform number of samples

in each signal we can either reduce the number of coefficients to the minimum number

available or we can zero pad the signal with a number of zeros to match each signal

length. Here the Chebfun coefficients considered are fixed according to the minimum

coefficient required for the signal reconstruction. The Chebfun coefficients are fixed to

3500 coefficients for this study.

3.3.4 Methodology

The aim of this study is to analyze whether the Chebfun feature can replace con-

ventional feature extraction techniques. Using the ability of Chebfun coefficients to

reconstruct the original signal the study aims to interpret the features learned by the

model. For this study, we have considered the feature extraction techniques such as

the Pan-Tompkin algorithm [58], Hamilton algorithm [59], Engelse and Zeelenberg al-

gorithm [60], Christov algorithm [61], stationary wavelet transform [62], and matched

44



filter [63] . Due to the minimum number of sample sizes, the analysis is conducted

using the state-of-art machine learning algorithms such as SVM, Logistic Regression,

Decision Tree, and AdaBoost. The best model parameters for the study are computed

by running the grid search over the model parameters. For better validation of the re-

sult using a small dataset, instead of conventionally splitting the dataset into training,

testing, and validation sets we consider the leave-one-out cross-validation (LOOCV).

In this type of validation the model is validated against each of the data samples. The

workflow of the validation set up is, first, the model will get trained for all the available

data samples except one. The model is getting tested by predicting the label for one

data sample that is untrained. Similarly this procedure gets repeated for all the data

samples by shifting one after the other. The model accuracy is the average of accuracy

of the model prediction for all the data samples. The methodology followed for the

study is shown in the Fig3.11. The features from the ECG signal of the SC dataset is

extracted using Chebyshev features , and other conventional features and is fed to the

classifiers for making predictions. These prediction predictions are further analysed for

the study.

Figure 3.11: The methodology of comparing the performance of the Chebyshev features
with different conventional features.
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Table 3.17: The PSNR value computed between the original and the ECG signal re-
constructed from the truncated Cheb coefficients.

Data PSNR(dB) Data PSNR(dB)
Normal signal 1 60.755 Abnormal signal 1 48.872
Normal signal 2 58.010 Abnormal signal 2 48.718
Normal signal 3 57.695 Abnormal signal 3 48.033
Normal signal 4 56.662 Abnormal signal 4 47.938
Normal signal 5 54.642 Abnormal signal 5 47.332

3.3.5 Experiments and Results

The proposed work is evaluated using SC cardiovascular disease dataset. As a foot

in the door of analysis the PSNR value is computed between the original and the

reconstructed ECG signal from the truncated Chebfun coefficients. The PSNR value is

computed for the validation of whether the truncated cheb coefficients are sufficient for

capturing all the structural information of the ECG signal. Few samples of the PSNR

values that are obtained from the computations are shown in Table 3.17.

The PSNR value of reconstructed ECG signal with reference to the original signal

ranges from 47.332 to 60.755. From the PSNR value there is a clear picture portrayed

that the reconstruction is proper for the ECG signal. The truncated Chebfun coefficient

could capture all the required signal information. For the further validation for the

proper retrieval of the structural information of the ECG signal, the signal is plotted

as an image. The images of the original signal and its reconstruction with the Chebfun

for the healthy and diseased cases are shown in Fig 3.12 and Fig 3.13 respectively.

From Fig 3.12 and Fig 3.13, it’s clear that the Chebfun is able to capture all struc-

tural variation of the signal for healthy (Normal) and diseased (Abnormal) cases. For

46



Figure 3.12: The original normal signal and the reconstructed signal using Chebfun
coefficients.

the analysis of performance the proposed chebfun feature extraction technique is com-

pared to the prevailed conventional feature extraction such as the Pan-Tompkin al-

gorithm, Hamilton algorithm, Engelse and Zeelenberg algorithm (EngZee), Christov

algorithm, stationary wavelet transform, and matched filter. The different models used

for the analysis are SVM, Logistic Regression, Decision Tree, and AdaBoost. In a

biomedical application scenario, validation of disease detection is unacceptable with

accuracy measures alone. For a more accurate evaluation of the Chebyshev system, we

have considered the accuracy, precision, recall, and specificity as evaluation metrics.
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Figure 3.13: The original abnormal signal and the reconstructed signal using Chebfun
coefficients.

Accuracy defines the overall performance. Sensitivity/Recall defines the ability of the

model to detect the positive cases (diseased cases). Precision defines the ability of the

model to detect the relevant positive cases. Specificity defines the ability of the model

to detect the negative cases (healthy cases). Comparison of different conventional fea-

tures with Chebyshev features for the detection of cardiac disease in SC data by using

different machine learning algorithms in terms of accuracy (%), precision, recall, and

specificity are shown in Table 3.18, Table 3.19, Table 3.20, Table 3.21 respectively.

From the tables we can infer that Chebyshev features using SVM classifiers have
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Table 3.18: Comparison of different conventional features with Chebyshev features
for the detection of cardiac disease in SC data by using different machine learning
algorithms in terms of accuracy (%)

Cheby-
shev

Pan
Tompkins

Hamil-
ton

Chris-
tov

Eng-
Zee

Matched
filter

SWT

SVM 81.1 59.5 62.2 59.5 70.3 67.6 64.9
LR 64.9 70.3 67.6 64.9 70.3 64.9 70.3

Decision
Tree

59.5 59.5 59.5 45.9 67.6 62.2 73.0

AdaBoost 62.2 62.2 54.1 48.6 67.6 62.2 73.0

Table 3.19: Comparison of different conventional features with Chebyshev features
for the detection of cardiac disease in SC data by using different machine learning
algorithms in terms of precision

Cheby-
shev

Pan
Tompkins

Hamil-
ton

Chris-
tov

Eng-
Zee

Matched
filter

SWT

SVM 0.800 0.333 0.333 0.00 0.750 0.600 0.500
LR 0.000 0.750 0.571 0.000 0.750 0.500 0.625

Decision
Tree

0.400 0.429 0.400 0.182 0.556 0.467 0.615

AdaBoost 0.444 0.462 0.000 0.200 0.556 0.444 0.615

Table 3.20: Comparison of different conventional features with Chebyshev features
for the detection of cardiac disease in SC data by using different machine learning
algorithms in terms of recall/sensitivity

Cheby-
shev

Pan
Tompkins

Hamil-
ton

Chris-
tov

Eng-
Zee

Matched
filter

SWT

SVM 0.615 0.154 .077 0.00 0.231 0.231 0.077
LR 0.000 0.231 0.308 0.000 0.231 0.231 0.385

Decision
Tree

0.308 0.462 0.308 0.154 0.385 0.538 0.615

AdaBoost 0.308 0.462 0.000 0.154 0.385 0.308 0.615
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Table 3.21: Comparison of different conventional features with Chebyshev features
for the detection of cardiac disease in SC data by using different machine learning
algorithms in terms of specificity

Cheby-
shev

Pan
Tompkins

Hamil-
ton

Chris-
tov

Eng-
Zee

Matched
filter

SWT

SVM 0.917 0.834 0.917 0.917 0.958 0.917 0.958
LR 1.00 0.958 0.875 1.000 0.958 0.875 0.875

Decision
Tree

0.750 1.00 0.75 0.625 0.834 0.666 0.833

AdaBoost 0.792 0.708 0.834 0.666 0.834 0.792 0.792

outperformed all other conventional feature extraction techniques using all other clas-

sification algorithms in terms of accuracy, precision and recall. One other inference is

that, in case of specificity even though the SVM classifier using Chebyshev features can-

not outperform other conventional features, it has equivalent performance with other

models.

For the further evaluation of the experiment we have included the confusion matrix.

The confusion metric for the SVM model using Chebyshev features and conventional

features are given in the Fig 3.14 From all this analysis and with reference to Fig 3.12

Figure 3.14: The confusion matrix of the SVM model predictions using the chebyshev
features and conventional features..

and Fig 3.13. we can infer that Chebyshev polynomial approximation can capture all the
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structural pieces of information of ECG signals which indicate the disease characters. In

most cardiovascular diseases, the disease characteristics can be present in other portions

of the signal such as Q, S, T waves along with R peak. In the case of other conventional

features, they capture only the peak information [9] and so there is a chance of missing

out other structural variation that indicates the diseases. In such cases it leads to the

failure of the model to distinguish between normal and abnormal signals. The peculiar

characteristics of the Chebfun which exploit the capacity to capture all the structural

information of the disease in ECG signal helps the model to distinguish between the

normal and the abnormal cases than the conventional features.

The proposed work is further extended to check the possibilities of chebyshev fea-

tures for the analysis of the different tachycardia disease. The possibilities are evaluated

on the AF dataset from the CINC challenge. For this analysis we artificially created a

small sample dataset by taking only 50 samples from each normal and atrial fibrillation

cases. The same procedure which we followed for extracting the Chebfun features from

SC data are repeated for AF dataset. The minimum Chebfun coefficients are fixed to

2497 for every sample.

The minimum number of Chebfun coefficients required for the analysis is validated

using the PSNR value computation. The samples of PSNR of the AF ECG samples are

shown in Table 3.22.

From the PSNR values we could infer that the original ECG signal of the AF

dataset is highly noisy. For the detailed analysis we have plotted the reconstruction of

the normal and abnormal signal of the AF dataset. Fig 3.15 and Fig 3.16 shows the
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Table 3.22: The PSNR value of the reconstructed signal using chebfun coefficients with
reference to the original signal

Data PSNR Data PSNR
1 -15.086 6 -42.856
2 -15.892 7 -43.234
3 -15.977 8 -44.928
4 -16.506 9 -47.12
5 -16.715 10 -51.653

Figure 3.15: The original normal signal and the reconstructed signal using Chebfun
coefficients for AF data.

reconstructed signal and its original signal.

The performance of the different machine learning models such as SVM,LR, Deci-

sion tree, adaboost using the chebyshev features and other conventional features are
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Figure 3.16: The original abnormal signal and the reconstructed signal using Chebfun
coefficients for AF data

tabulated in Table 3.23, Table 3.24, Table 3.25 and Table 3.26.

From the results it’s clear that the Chebfun couldn’t outperform other conventional

feature extraction techniques but gained approximately equal performance. The inter-

pretation for this model performance is done by analysing the signal quality. Already

from the PSNR value there is a clear picture that the signal is noisy. In the Fig 3.15

in the time stamp near 400 we could see that the signal is going down steeply which

is not the case in an normal ECG signal. This shows that normal ECG signal of AF

data is corrupted with the unwanted noises which may resemble the diseased condi-
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Table 3.23: Comparison of different conventional features with Chebyshev features
for the detection of cardiac disease in AF data by using different machine learning
algorithms in terms of accuracy (%)

Cheby-
shev

Pan
Tompkins

Hamil-
ton

Chris-
tov

Eng-
Zee

Matched
filter

SWT

SVM 51.00 64.00 68.00 30.00 60.00 55.00 64.00
LR 55.00 59.00 68.00 67.00 67.00 58.00 60.00

Decision
Tree

71.00 69.00 72.00 66.00 65.00 56.00 58.00

AdaBoost 71.00 54.00 64.00 56.00 58.00 61.00 58.00

Table 3.24: Comparison of different conventional features with Chebyshev features
for the detection of cardiac disease in AF data by using different machine learning
algorithms in terms of precision

Cheby-
shev

Pan
Tompkins

Hamil-
ton

Chris-
tov

Eng-
Zee

Matched
filter

SWT

SVM 0.510 0.640 0.661 0.308 0.609 0.547 0.621
LR 0.551 0.582 0.645 0.707 0.707 0.577 0.586

Decision
Tree

0.684 0.694 0.775 0.638 0.653 0.560 0.565

AdaBoost 0.733 0.537 0.630 0.562 0.583 0.604 0.569

Table 3.25: Comparison of different conventional features with Chebyshev features
for the detection of cardiac disease in AF data by using different machine learning
algorithms in terms of recall/sensitivity

Cheby-
shev

Pan
Tompkins

Hamil-
ton

Chris-
tov

Eng-
Zee

Matched
filter

SWT

SVM 0.520 0.640 0.740 0.320 0.560 0.580 0.720
LR 0.540 0.640 0.800 0.580 0.580 0.600 0.680

Decision
Tree

0.780 0.680 0.620 0.740 0.640 0.560 0.700

AdaBoost 0.660 0.580 0.680 0.540 0.560 0.640 0.660
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Table 3.26: Comparison of different conventional features with Chebyshev features
for the detection of cardiac disease in AF data by using different machine learning
algorithms in terms of specificity

Cheby-
shev

Pan
Tompkins

Hamil-
ton

Chris-
tov

Eng-
Zee

Matched
filter

SWT

SVM 0.50 0.64 0.62 0.28 0.58 0.52 0.56
LR 0.56 0.54 0.56 0.62 0.76 0.56 0.52

Decision
Tree

0.64 0.70 0.82 0.58 0.66 0.560 0.46

AdaBoost 0.76 0.50 0.60 0.58 0.70 0.58 0.5

tion. From the analysis we could interpret that the model may have confused between

the normal and abnormal classes because of the presences of these irregularities and

thus leading to small drop in performance in comparison with the conventional feature

extraction technique such as Hamilton. In the case of the Hamilton feature detector

it’s the QRS complex features that they are more focussing on and thus neglecting the

baseline features of the ECG signal which is not the case in Chebfun features. The

Chebfun captures all the structural information of the ECG signal and thus misleading

the model due to the noise signal. The Chebfun feature gained a better performance

than other conventional feature extraction techniques in SC dataset. In case AF dataset

the Chebfun features performance is slightly lower compared to Hamiltion but this can

be due to the misleading irregularities of the AF dataset’s ECG signals.
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Chapter 4

Conclusion

In this work, we proposed the transfer learning approach to interpret the features

learned by the model to detect different types of tachycardia diseases. This is attained

by training the five different deep learning architectures with one of the tachycardia

diseases (AF: TD1). The features learned by the model using one of the tachycardia

diseases are tested with all other types of tachycardia diseases namely ventricular fib-

rillation and sinus tachycardia. The experimental results and analysis have shown that

the RNN model performed better than other standard deep learning models such as

LSTM, GRU, CNN, and RSCNN. The model was able to detect the atrial (AF: TD1)

and ventricular type of tachycardia diseases (VF: TD2-A and VF: TD2-B) but failed

in the case of ST (TD3). In the case of atrial fibrillation and ventricular fibrillation,

it is the absence of P-wave and the presence of fibrillatory waves are the features that

enabled the model to detect diseases distinct from the sinus tachycardia. The char-

acteristic feature for sinus tachycardia is the upright P-wave, which the model failed

to capture when trained with one of the types of tachycardia diseases called atrial fib-

rillation. Thus, the present work led to ‘Explainable AI’, that interprets the model
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used to detect different types of tachycardia diseases, which have fast beat rhythm as

a common characteristic of the input ECG signals. In case of ECG dataset with less

samples we have analysed the possibilities of the Chebyshev feature extraction for car-

diac disease detection. From the experiments and the result we could conclude that for

the SC dataset the Chebyshev features extracted from the ECG signal using the SVM

classifier have outperformed all other conventional feature extraction techniques such

as Pan-Tompkins, Hamiltion, Engzee, Christov, matched filter and switched wavelet

transform. The Chebfun gained an accuracy of 81.1%, precision of 0.800, recall of 0.615

and a specificity of 0.958. From the experiments it’s also possible to infer that the

Chebyshev coefficients could capture all the structural variations of the ECG signal

for the better identifications of the normal and abnormal ECG signals. In case of AF

data the Chebyshev features couldn’t outperform other conventional feature extraction

technique. This drop in performance in AF dataset can due to the irregularities in the

normal ECG signal which when fed to the model makes less distinguishable between

the abnormal signal.

The major findings of this work includes,

• This work interprets features learned by the model for the detection of tachycardia

diseases leading to Explainable AI. Our main finding is: although all type of

tachycardia diseases have fast beat rhythm as the common feature, there lies

features specific to a disease. For example, sinus tachycardia, which is one of

the types of tachycardia has positive upright P-wave, which was not captured
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by the deep learning models trained with the ECG signals containing one of the

tachycardia diseases, called atrial fibrillation (AF).

• This paper detects different types of tachycardia diseases using a single model by

using the transfer learning approach.

• The proposed method finds the RNN is the best model for the detection of tachy-

cardia diseases in different models considered.

• The chebyshev function performs better than other conventional feature extrac-

tion technique for SC data.

• The chebyshev function couldn’t perform better for AF dataset. This can be

due to the irregularities in normal signal of the AF data which may mislead the

algorithms.

The future work that can be extended from the current work are

• To find more specific feature that is corresponding to the P-Wave and to do

performance analysis based on that features

• To explore the possibilities of Chebyshev function for the interpretation of differ-

ent classes in cardiac disease.

• To remove the different factors of noises and check the possibility of Chebyshev

function.
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• To remove the barrier of imbalance between the normal and abnormal class and

explore the influence of that in cardiac disease detection
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Abstract

The recent years has witnessed a substantial progress in the research of computer vision

and its application in medical imaging. The automated computer vision techniques has

become a vital component in several healthcare applications. Although there were

several researches on medical imaging using classical image processing techniques, most

of them were subjective to the threshold values or other parameter values chosen by the

user. The deep learning based computer vision algorithms are data driven techniques

that can capture any spatial or temporal variations in the data and hence are not

subjective to user. The application of computer vision techniques for medical imaging

can provide useful information for diagnosis and treatment. The AI based technology

can assist doctors for better diagnosis, prescribe correct treatments and monitor the

progress of several diseases. This work mainly focuses on exploring the effectiveness of

deep learning based detection and segmentation algorithms for tasks such as detection of

valid and invalid comets in a comet assay image and for the detection and segmentation

of multiple myeloma cancer cells from bone marrow aspirate images. Single cell gel

electrophoresis assay (SGCE) or comet assay is a most frequently used method to

measure the degree of DNA damage in eukaryotic cells or tissues. The result of the

comet assay is a set of comet images which is analysed to measure the level of DNA

damage. Currently the comet assay image analysis is performed using semi-automatic

and automatic open source softwares. Most of these softwares faces the problem of

either higher false negative or higher false positive. The chapter 2 proposes a deep

learning based object detection algorithm for detection of valid and invalid comets. The

dataset is collected from AIMS Nano science department which has total of 3000 comet

assay images for different concentrations of compound tested. From the experiments

performed it is observed that the proposed method gave competing results with open

ix



source softwares open comet and hicomet. Multiple myeloma cancer is caused by the

abnormal growth of plasma cells in the bone marrow. The most commonly used method

for diagnosis of multiple myeloma is Bone marrow aspiration, where the aspirate slide

images are either observed visually or passed onto existing digital image processing

software for the detection of myeloma cells. The chapter 3 explores the effectiveness

of deep learning based object detection/segmentation algorithms such as Mask-RCNN

and U-net for the detection of multiple myeloma. The manual polygon annotation

of the current dataset is performed using VGG image annotation software. The deep

learning models were trained by monitoring the train and validation loss per epoch and

the best model was selected based on the minimal loss for the validation data. From

the comparison results obtained for both the models, it is observed that Mask-RCNN

has competing results than U-net and it addresses most of the challenges existing in

multiple myeloma segmentation.
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Chapter 1

Introduction

Computer vision is an interdisciplinary field of research that focuses on extracting mean-

ingful descriptors of objects from digital images or videos. It can be interpreted as a

methodology where the computers can learn high level information from real world

objects by mimicking the human visual system. The computer vision includes several

stages such as acquiring, processing, analysing and understanding of images, which is

then used to extract high-level information from images. The computer vision has a

wide range of applications such as autonomous vehicles, medical diagnosis, geological

surveying, satellite imaging, quality control and other basic scientific research problems.

Furthermore, the computer vision has potential application to all problems where the

images plays an important role. The most commonly used computer vision techniques

include edge detection, shape description, region growing, image detection and segmen-

tation.

The recent years has witnessed a rapid growth in researches in the field of computer

vision and medical imaging. This is made possible with the abundant availability of
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data and advances in the computing power. With the advances in the Deep Learning

(DL) methodologies, it has become a prominent framework for data analysis in medical

imaging. The deep learning models has the ability to learn complex non-linear relations

in the data and can capture any spatial or temporal variations present. The use of DL

algorithms has proven to be highly flexible and effective in medical imaging tasks such

as Brain Imaging, Ophthalmology, Pulmonology, Pathology and Cardiology. The ad-

vent of Convolutional Neural Networks (CNNs) has made a huge impact in the field of

computer vision and image data analysis. The CNNs have the capability to extract in-

formative, translational invariant features from the images. The Deep CNNs are used as

backbone networks for feature extraction and finally outputs a pixel-wise classification

or regression information for several tasks such as object detection or image segmenta-

tion. Some of the most commonly used architectures are the Regional Convolutional

Neural Network (RCNN) family [59, 60, 58, 54], and U-Net [55]. The use of computer

vision techniques in healthcare can help doctors diagnose the patients to make faster

and better decisions. Also, it can reduce the misdiagnosis rate substantially, as any

misdiagnosis in the medical field can cause loss of money and most importantly the life

of patients. Furthermore, it can help in early detection of fatal illnesses such as cancer

with high certainty and thus be useful for timely treatment and can save countless lives

in the long run.

One of the most common challenge for any medical imaging task is the availability

of large number of annotated datasets and is considered a limitation for the develop-
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ment of new applications in the field. This is because, the annotation of medical data

requires many hours of strong attention by medical experts to provide pixel-level an-

notation for several tasks. The current work mainly focuses on the application of deep

learning based detection and segmentation algorithms on various microscopic medical

images to automate the diagnosis by expert doctors, clinicians and pathologists.

1.1 Literature

The use of automated computer vision based detection and segmentation algorithms

can effectively reduce the valuable time of expert doctors and other trained personals

to provide better diagnosis and treatment. The most commonly used medical imag-

ing techniques for computer vision applications are x-ray, computer tomography (CT),

ultrasound, MRI and positron emission tomography (PET). Some of the recent works

in medical imaging using computer vision includes [1, 2] where they have proposed a

CNN based image registration for the volume registration of CT and MR images. The

works [3, 4] has shown that the networks when trained with a combination of model-

labelled and human-labelled data outperforms the original architecture. The authors

of [5] have used a combination of CNN and handcrafted features and applied classi-

cal machine learning for the classification of prostate lesions. While [6, 7] has shown

how the networks can be trained for segmentation with higher-level annotation than

pixel-wise labels. A review on semi-supervised learning approaches applied on medical

imaging was done by [8]. Ghafoorian et al. [9] have made a study on the optimal
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ways that can be used to apply transfer learning on MRI image segmentation tasks.

The authors of [10, 11] has proposed a model where the shape priors are learned using

auto-encoders and is then combined with CNNs as regularizers for several tasks such

as cardiac MRI, ultrasound segmentation , kidney ultrasound segmentation, and super

resolution. Agrawal et al. [12] have used encoded anatomical information as input to

the network for modelling bone landmarks. The local shape descriptors are obtained

by geodesic patch extraction method and is trained using Siamese CNN network.

Some of the other works has explored on the integration of data from different

modalities for a single task. Liu et al. [13] have proposed a multi branch CNN that will

combine data from different modalities such as brain patches, patient information for

brain disease diagnosis. Similarly, [14] performed brain tumor segmentation from MRI

data by splitting a CNN network into various channels with sparse interaction for dif-

ferent MRI modalities. Ge et al. [15] used a CNN network for skin disease identification

with multimodal inputs such as macroscopic mole images and dermatoscopy images.

While [16] have proposed an ensemble learning technique for lung nodule classification

by integrating different inputs. Dai et al. [17] have suggested a solution for combining

patient textual information in CNN along with fundus images for diabetic retinopathy

detection.
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1.2 Objectives

The main objectives of this work are:

• To detect valid and invalid comets in a comet assay image using deep learning

based object detection algorithm.

• To detect and segment plasma cell or myeloma cell from bone marrow aspiration

microscopic images using deep learning based object detection algorithm.

1.3 Thesis Overview

The rest of the thesis is organized as follows. Chapter 2 presents the work on the

detection of valid and invalid comets from a comet assay image using deep learning

based object detection algorithm. This chapter includes the introduction, literature,

methodology and experimental results of the work on comet assay detection. In chapter

3, the detection and segmentation of multiple myeloma cells from bone marrow aspirate

images using deep learning based detection and segmentation algorithms are explained

in detail. This chapter includes the introduction, literature, methodology and exper-

imental results of the work on multiple myeloma detection. Finally chapter 4 briefly

describes the conclusions of both the works done and their respective future works.
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Chapter 2

Comet Assay - Detection OF Valid
Comets Using Object Detection
Algorithm

2.1 Introduction

Image processing techniques applied to medical images can extensively reduce the effort

and time of doctors, medical practitioners and scientists in the field of genetics. It is

important to preserve the DNA structure in cells to effectively transfer the genetic

information to the upcoming generations. Most of the new-born diseases like cancer,

immune deficiencies are caused by alteration in the DNA structure. Chemical and

radiation genotoxins destruct the genetic information in the cells making it important

to measure the level of DNA damage [18]. The SGCE (single cell gel electrophoresis)

assay or comet assay is a sensitive and effective method in measuring the degree of

DNA damage in eukaryotic cells or tissues [19, 20]. In SGCE, cells treated with a DNA

damaging agent are lysed and loaded onto an agarose gel, which is then stained with

a dye. The electrophoresis releases the segments of the broken strand of the damaged
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DNA in the surroundings outside of the cell. The appearance of the damaged DNA

becomes similar to the tail of a comet, whose head is the nucleus of each single cell.

The comet tail formation is obtained due to the migration of the damaged DNA strands

towards the anode [21]. As the dose of the DNA damaging agent increases, the comet

head grows dimmer and the tail grows longer and brighter. The comet assay images

are obtained using a camera attached to the optical microscopes and DNA damage is

quantified by analysing the images.

2.2 Literature survey

Damage analysis techniques for comet assays include visual scoring and digital image

processing methods. Initially, the damage analysis of DNA was based on visual percep-

tion of the researchers and this approach is prone to human error as it involves grouping

of comets based on the levels of damage observed. A software that analyses the im-

ages overcomes these difficulties by automating the process of quantification on DNA

damage by measuring the parameters such as Head intensity, Tail intensity, Head DNA

percentage, Tail DNA percentage, Tail moments. The availability of such software as

open source is limited. CASPLab [22] is one such semi-automatic software which accepts

only TIFF images and requires manual selection of comets and threshold. CASPLab

localizes the head and tail of the comet based on the selected threshold and measures

the damage parameters. CometScore [23] overcomes the manual selection of comets but

requires the selection of threshold value. CometScore software fails to measure highly

damaged comets as it considers the diameter of the head is the same as the height of the

7



comet and also restricts itself to BMP images. The OpenComet [24] is a fully automated

software which validates the comet based on convexity ratio and symmetricity check.

This limits the resolution of damage detection which inturn leads to false negatives

i.e., missing the asymmetric comets and heavily damaged comets. In hicomet [25], the

detection of heavily damaged comets (aptosis) is included using adaptive thresholding

technique and further classification of comets as normal,necrosis and aptosis is imple-

mented. Hicomet classifies the comets based on Histogram of Gradients (HOG) features

extracted with 4 different classifiers such as Support Vector Machine(SVM),Neural Net-

work(NN),Adaboost and Classification and Regression Tree(CART). Though hicomet

detects all the types of comet, it also includes some of the non-comets as comets which

results in false positives. Apart from the open source software, there exist other clas-

sification algorithms for damage analysis of the comet assays. De Souza et al. [26]

experimented various machine learning approaches based on features extracted from

the images to classify the degree of damage of the comets. Another image based clas-

sification approach by Namuduri et al. [27] quantifies the DNA damage of the comet

assays using deep transfer learning approach. The DNA damage analysis is a combina-

tion of detecting valid comets, damaged comets and measuring the damage parameters.

The existing open source algorithms for detecting the valid comets are based on tra-

ditional approaches and the types of the comet are not explicitly given except hicomet

[25]. Furthermore, quantification of damaged comets is implemented with the help of

intensity profile of detected comets. As the existing approaches are limited to sym-
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metric and less-damaged comets from the assays, deep learning approaches to detect,

classify and measure the comets as individual modules is proposed in this paper. The

main goal of this paper is to provide a data driven approach in order to analyse the

comet assays and to assist on research experiments. One of the recent work on dam-

age analysis of DNA cells has recommended the use of Convolutional Neural Networks

(CNN) architectures with sufficient data as future work [26]. In this paper, the valid

comets are detected using object detection algorithm. Faster R-CNN [28] is the latest

technique in the family of R-CNN based object detection algorithms [29, 30] and it

is less time consuming than its previous versions Fast R-CNN and RCNN. The main

difference of Faster R-CNN with its previous versions is the use of a region proposal

network (RPN) for generating region of interests. The main goal of this work is to pro-

vide a data driven approach to analyse the comet assays and detect valid and invalid

comets with lesser false negatives and false positive, which in turn will improve the

quantification of comets.

2.3 Problem Statement

From the literature, it is evident that most of the open source software’s faces the

problem of high false negatives or high false positives. Thus the detection of valid and

invalid comets from a comet assay image is a crucial step towards comet assay analysis.
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2.4 Objectives

The main objective of the current project is to detect valid and invalid comets from a

comet assay image using deep learning based object detection algorithm, such that it

reduces the number of false negative and false positives.

2.5 Motivation

As per the literature, most of these open source software’s face the problem of having

either high false negatives or high false positives. Figure 2.1 show the comparison of

open source software’s open comet and hicomet. Figure 2.1 (a) shows that open comet

fails to detect a highly damaged comet, which is detected by hicomet. This shows

the high false negative rate of open comet. Figure 2.1 (b) shows that hicomet detects

invalid comets as comets, increasing the false positive rate. The proper detection of

valid comets is thus a crucial step for applications of comet assay images. In this work,

a deep learning based object detection algorithm is proposed for the detection of valid

and invalid comets from a comet assay image, which reduces the false negative and false

positives.
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Figure 2.1: Comparison of Open comet and Hi comet results on comet assay images

2.6 Methodology

Literature has explored various image processing techniques for the detection of valid

comets. These techniques are mostly based on some assumptions and threshold values,

making it more vulnerable to errors. The current work acts as one of the modules of a

complete comet assay tool that was developed for comet assay analysis. The tool has

mainly three modules such as detection of valid comets using Faster RCNN, classifi-

cation of valid comets using a classifier model and quantification of damaged comets

using a key point detection model as shown in 2.2.
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Figure 2.2: Block diagram of comet assay analysis tool

In this work the first module of the comet assay tool is explained in detail, which

proposes a deep learning based objection detection algorithm namely Faster R-CNN

[28] for detection of valid and invalid comets. Object detection is a computer vision

task which identifies location, presence and type of one or more objects in a given image.

The algorithm is a data driven algorithm which by itself learns different spacial and

temporal patterns from the raw images without the help of any image pre-processing

techniques, thus making it more reliable.

12



2.6.1 Faster-RCNN (Regional Convolutional Network)

Figure 2.3: Block diagram for the proposed detection method using Faster-RCNN

In faster R-CNN, the input image is passed to a deep convolutional network which gen-

erates features maps of the image. The region proposal network acts on the feature maps

to give the object proposal along with the objectness score. These object proposals are

then resized to the same size by passing through a region of interest (ROI) pooling layer.

Finally, the resized object proposals are used to classify and predict bounding box for

objects. The classification is performed by a fully connected layer with softmax acti-

vation and bounding box are predicted by a regression layer on top of the softmax layer.

In this module, we have used the implementation of Faster R-CNN from [31], where

the input to the object detection algorithm is the raw comet assay images and its corre-

sponding bounding box annotation files. The bounding box of valid and invalid comets

are annotated with the help of domain experts using ImageJ annotation tool [32]. The

predicted results of the object detection algorithm will have corresponding classes and
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bounding box coordinates of the detected comets.

The proposed model is experimentally chosen based on the performance on detection

of valid comets. The results of the proposed model is then compared with the results of

open source softwares such as open comet and hicomet based on the evaluation metrics

true positives, false positives, false negatives and true negatives.

2.6.2 Image Annotation

Input to the object detection algorithm is the raw comet assay images and corresponding

bounding box annotation files. The bounding box annotations for valid and invalid

comets are done with the help of domain experts using Image J annotation tool [32].

The annotation files for each comet assay image is saved as a .txt file with the name

of the image and has class label and the bounding box co-ordinates. The annotations

has to be further formatted to Faster R-CNN input annotation format to input the

algorithm. Figure 2.4 and figure 2.5 shows the sample image for manual annotation work

done. The annotation has to be manually done using Image J tool by simultaneously

comparing with ground truth annotations form the domain experts.
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Figure 2.4: Illustrates the demo on manual annotation of comet assay images using
Image J tool

Figure 2.5: Illustrates the sample annotated image

15



2.7 Experiments Analysis and Discussions

2.7.1 Dataset Description

Figure 2.6: Describes dataset with different concentrations: (a) Control, (b) 1ng/ml,
(c) 10ng/ml, (d) 100ng/ml, (e) Positive control

Dataset was obtained from AIMS Nano science Department. The comet assay ex-

periment was performed on a fish breed “Japanese Medaka”. The eggs of the fishes

were collected initially by breeding the fishes. The eggs were stored in water for lar-

vae formation. The larvae formation happens at 7 days post fertilization (7dpf) and

the experimentation was started at 18 dpf. First the larvae is treated with water

(controls). Then the experimentation was carried out using different concentrations

(1ng/ml, 10ng/ml, 100ng/ml) of the compound diethyl phthalate (DEP). Finally ex-

perimentation was done on hydrogen peroxide (H2O2 – positive control) which gives
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maximum damage. The cells are then lysed and stained using ethyledium bromide

dye. As per the experimentation, the dataset is divided into 5 folders namely control,

1ng/ml, 10ng/ml, 100ng/ml and positive control, each having 5 folders of male and

female experimented cell images. For each concentration male and female cell folders

were labelled as female1, female2, female3, female4, female 5 and male1, male2, male3,

male4, male5. The dataset has total 3000 images with each concentration folder having

600 images. Figure 2.6 shows the sample images from each concentration folders of the

dataset.

2.7.2 Experimental Results and Discussions

The dataset is divided into train and test set by taking 80/20 split from each of the

5 concentration folders, where 80% of the images from each concentration is taken for

training (40 folders – 2400 images) and remaining 20% for testing (10 folders – 600

images). The Faster R-CNN model is trained by transfer learning approach [33] from

scratch using pre-trained weights of a blood cell detection model [34, 35] as its initial

weights. The faster R-CNN model is trained for 500 epochs and is validated on test set

at every 100 epochs to select the proposed model.

The result analysis is performed on the test set folders at every 100 epochs of the

trained model. Figure 2.7 (a) shows the sample result image for the test set folder

positive control female 1. The green bounding box in the image shows the valid comets

detected by the algorithm and blue bounding box shows the invalid comets detected by
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the algorithm with corresponding probability values for each class.

Figure 2.7: Illustration sample result image for the test set folder positive control female
1: (a) predicted result, (b) ground truth annotation drawn on predicted result.
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Figure 2.7 (b) shows the corresponding ground truth annotation bounding box

drawn on the resulting image. The red bounding box in the image indicates the ground

truth annotation for valid comets. The comparison with ground truth annotation is

done using Intersection of union (IOU) metric [36, 37]. IOU is a metric that evaluates

the similarity of the predicted bounding boxes to the ground truth bounding boxes. It

calculates the ratio of overlapped region to the original ground truth area. The IOU

values range from 0 to 1. The best IOU threshold for the proposed work is selected

based on the performance of the model for the test set for every 100 epochs. The best

IOU threshold is set by comparing the test set results for each 100 epochs. The IOU

calculation is done with only valid comets detected, as in a comet assay image every-

thing other than valid ground truth comets are considered to be invalid comets. The

performance of the experimented models are compared based on the analysis of the

confusion matrix computed for different IOU values such as 0.5, 0.6, 0.7, and 0.8.

Figure 2.8 show the variation of evaluation metrics such as true positive (tp), false

negative (fn), false positive (fp) and true negative (tn) for each 100 epochs for the

test set folder positive control female 1. For all the epochs from 100-500 epochs, it is

observed that false negative is very less and true positive is very high for an IOU of 0.5,

whereas false positive and true negative values remains same for all the IOU values.

The best IOU threshold value is hence set as 0.5.
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Figure 2.8: Comparison of experimented model on a)True positives b)False Negatives
c)False positives and d)True negatives

The proposed model is selected by further analysis on the variation of evaluation

metrics for each 100 epochs by fixing the IOU threshold value as 0.5. From figure 2.8,

it is observed that number of false negatives is very less and true positives is very high

at 300 epochs, but the number of false positives is relatively higher for 300 epochs.

In the current problem of detection of DNA damage in cells, the model is considered

to be efficient if the number of false negatives is lesser, irrespective of the false posi-

tive value. This is because, the model must not miss any of the valid comets, though
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it detects the invalid as valid. The proposed model is hence selected to be at 300 epochs.

Figure 2.9: Block diagram for results comparison.

The results obtained from the selected model of IOU as 0.5 and epoch 300 is now

compared with the ground truth annotations, detection by open comet and hicomet

to show the efficiency and reliability of the proposed method. The result comparison

is done for all the test set folders using confusion matrix. Figure 2.9 shows the block

diagram of results comparison for the proposed method. In comparison 1, the confu-

sion matrix for the open comet and hicomet outputs with respect to the ground truth

annotations is computed for all the test set folders. In comparison 2, the confusion

matrix for the proposed method output with respect to the ground truth annotations

is computed for all the test set folders. Finally in comparison 3 to show the efficacy of

the proposed method, the confusion matrices obtained from the comparison 1 and com-
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parison 2 are compared based on the evaluation metrics true positive, false negative,

false positive and true negative.

Figure 2.10: Confusion matrix of a) Open comet b) Hi comet and c) Proposed model

The comparison is carried on test set of 600 comet assays consisting of 673 valid

comets and 1968 invalid comets. The confusion matrix of the proposed model, open

comet and hicomet results are shown in figure 2.10. From figure 2.10, it is observed that

true positives are high in confusion matrix of hicomet and true negatives are high in

confusion matrix of the proposed model. Though hicomet has less false negatives and

high true positives, the comets are detected irrespective of the scope of groundtruth

valid comets and this may further lead to false measurements of valid comets. The

proposed model overcomes the above limitation by considering the comets as valid only

if it covers at least fifty percentage area of the groundtruth valid comets (IOU > 0.5).

This makes the proposed model more reliable on validation of a comet. The false pos-

itives in the confusion matrix shows the detection of invalid comets as valid comets.

The proposed model detects less false positives than open comet and hicomet. These
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comets can be further validated based on the classification and quantification modules

present in the comet assay analysis tool developed.

Figure 2.11: Online software tool for comet assay analysis - uploading image

Figure 2.12: Prediction results of online software tool for comet assay analysis
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Figures 2.11 and 2.12 shows the comet assay analysis tool that was developed as a

web application. Figure 2.11 shows the web page where the comet assay image has to

be loaded for the qualitative and quantitative analysis. The prediction results obtained

from the comet assay analysis tool for the uploaded image are shown in figure 2.12.
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Chapter 3

Deep Learning Based Approach For
Multiple Myeloma Detection

3.1 Introduction

Cancer is a condition when cell grows out of control. Multiple myeloma (MM) is a

type of cancer caused by the abnormal growth of myeloma cells (plasma cells) in the

bone marrow [38]. Bone marrow is a soft tissue in bones which is home to blood cells

such as red blood cells (RBCs), platelets and various white blood cells (WBCs) that

are essential for the immune system [39]. The B lymphocytes or B cells are a group

of WBC present in the bone marrow that respond to any bacterial or viral infections

in the body. As the B cells respond to infections, they mature and get converted into

plasma cells. Plasma cells helps in fighting infections by producing antibodies that will

prevent infection and diseases [40]. In Multiple myeloma, the abnormal plasma cells

gets accumulated in the bone marrow and produce abnormal proteins which interferes

with the normal production of blood cells in bone marrow. As the myeloma cells over-

crowd the healthy blood cells, it reduces the count of RBC, WBC and platelets leading
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to low immunity. These abnormal proteins generated by myeloma cells can also cause

damage to kidneys and bones in the long run.

One of the recent studies has found that out of all cancers, 1% is caused by Multiple

myeloma and contributes 2% to the cancer deaths. Multiple myeloma is considered to

be highly curable when detected in early stages. The myeloma cells are usually distin-

guished from normal plasma cells based on their histologic and cytologic features [38].

One of the most common method used by pathologists for multiple myeloma diagnosis is

bone marrow aspiration, where a needle is injected into the bone to extract blood sam-

ples which is then lysed onto a slide and stained. From the obtained aspiration slides,

the percentage of plasma cells present in the bone marrow is estimated via microscopic

observation for the diagnosis of multiple myeloma [41]. The revised guidelines for the

diagnosing and managing MM is provided by [42]. Detection of myeloma cells from

bone marrow aspirates include visual inspection and digital image processing methods.

Even though advanced image processing techniques were recently introduced for cancer

cell detection, the visual microscopic inspection is still considered as the golden stan-

dard for multiple myeloma detection. However, the manual microscopic method is time

consuming and is highly subjective to human error. The limitations of the visual micro-

scopic method can be overcome by the use of digital image processing methods, where

the detection of myeloma cells in the bone marrow aspirate slides can be automated

and further diagnostic decisions can be made by expert pathologists. This will reduce

the diagnostic time of the patient as well as the workload on the pathologist experts.
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3.2 Literature survey

Detection, segmentation and further classification of cells from microscopic images is

a most recent research topic and has several approaches proposed by researchers using

advanced image processing and machine learning techniques. Some of the recent works

include [43] where the authors proposed an automatic cancerous cell detection method in

which the segmentation of nucleus is performed by a fuzzy c-means clustering algorithm.

The principal component analysis (PCA) is then applied to the rich set of features ob-

tained from nucleus. Finally, classification was done by ensembling SVM classifiers for

different parameters. Another work [44] studied the importance of coherence-controlled

holographic microscopy using quantitative phase features for the classification of can-

cer tissue cells and observed that classification based on quantitative phase information

outperformed classification based on morphometric features. While the authors of [45]

have used shallow CNN followed by a recurrent layer for the detection of tuberculo-

sis, intestinal parasite eggs and malaria in microscopic images. Meanwhile the authors

of [46] have used classical machine learning algorithms for malaria parasite detection,

where the images were divided into patches and feature were extracted from the patch

images. In [47], the authors used a combination of image processing methods such as

thresholding, k-means, and modified watershed algorithm for automatic segmentation

of cells and nuclei from microscopic images. The algorithm consists of three stages

including segmentation of WBCs, extraction of nuclei and separation of clustered cells.

Whereas [48] proposes a new method for counting bone marrow cells which includes
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localization of cells by color transformation and stepwise averaging method, then seg-

mentation of nucleus and cytoplasm using ostu’s method, region growing method, color

weakening transformation and k-means algorithm. The clustered cells were separated

using water shed algorithm followed by classification using support vector machines.

The authors of [49] has given a survey on the different computer-aided methods avail-

able for segmenting blood smear images. In [50], the authors used a combination of

typical features with three new features such as minimum thickness to minimum convex

thickness of nucleus mask, perimeters of smaller nucleus after splitting, minimum thick-

ness of nucleus mask to hausdorff distance of the nucleus and cell. The classification of

chronic myeloid leukemia cells was then performed using a novel decision tree algorithm.

Even though there are several researches in the area of detection and segmentation

of cell from microscopic images, the application of these approaches to MM specific

task is very limited. The initial work on MM detection was proposed by Saeedizadeh

et. al. [38], where contrast enhancement was initially performed on the images. The

nucleus and cytoplasm were detected using thresholding. The connected cells were

then splitted using bottleneck and watershed algorithms. Finally features are extracted

from cytoplasm and nucleus such as nucleus eccentricity, nucleus-cell ratio and classifi-

cation was performed using SVM classifier with a precision of 96.52%. Meanwhile [51],

addresses color normalization of stains and cell segmentation for microscopic images

and was an initial step for the development of an automatic plasma cell segmentation

tool – PCSeg for microscopic images [52]. The PCSeg tool, initially performs a sta-
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tistical modelling and computes separability index for the region of interests in the

image and then removes the unstained cells. Further the nucleus and cytoplasm are ex-

tracted using a multiphase level set method and finally the cluster cells are segmented

using watershed along with circular hough transform utilizing k-means based nuclei

mask. Another recent work [53] introduced Convolutional neural network (CNN) for

detection of MM. The authors applied median filter and contrast enhancement for the

image pre-processing. Finally features are extracted from the images using CNN model

Alexnet and classification into normal and blast cells was performed using SVM classi-

fier.

The segmentation and classification of cells from microscopic images using advanced

image processing and machine learning techniques has gained huge traction in building

automated tools. The machine learning and deep learning algorithms learns morpho-

logical features of objects in the image which are invisible to human eyes. In this paper,

the effectiveness of most commonly used deep learning based segmentation algorithms

such as Mask-RCNN (regional convolutional neural network) [54] and U-net [55] on

multiple myeloma detection and segmentation are explored. Moreover one of the re-

cent works [56] have compared the performance of Mask-RCNN and U-net for a nuclei

segmentation task.
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3.3 Problem Statement

The diagnosis of multiple myeloma is currently performed by searching for myeloma

cells in the bone marrow aspirate slides through a microscope [38]. The detection by

visual inspection is a subjective and time-consuming task for pathologists. Most of the

existing approaches are based on classical image processing techniques and is subjective

to the thresholding values chosen. Moreover, the detection and segmentation of plasma

cells is a challenging task due to following problems:

• Segmentation of plasma cells requires segmentation of both cytoplasm and nu-

cleus.

• The color contrast of nucleus and cytoplasm and the cytoplasm with the adjacent

background is less due to overstaining or understaining.

• Most of the plasma cells are clustered together such as nuclei-nuclei cluster, nuclei-

cytoplasm cluster or cytoplasm-cytoplasm cluster.

• Microscopic image has more than one type unstained or stained cells.

The challenges specific to plasma cell segmentation mentioned above are shown in

figure 3.1.
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Figure 3.1: Challenges of plasma cell segmentation in Multiple myeloma dataset

3.4 Objectives

The main objective of the current project is to detect and segment plasma cell or

myeloma cell from bone marrow aspiration microscopic images using deep learning

based object detection algorithm.

3.5 Motivation

From the literature it is evident that most of the researches in the area of MM detection

were based on conventional image processing techniques and to our knowledge so far
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there is no work related to the MM detection from bone marrow aspirate images using

deep learning based segmentation algorithms. Also the authors of [52] have quoted their

future work as plasma cell detection and segmentation using deep learning methods.

Furthermore, the Previous work in Chapter 2 on detection of valid and invalid comets

from a comet assay image using object detection algorithm was able to detect most of

the valid comets with respect to the groundtruth. Thus the literature and the compet-

ing results obtained on comet assay data gave us motivation to explore the performance

of object detection algorithm on plasma cell detection.

3.6 Methodology

In this work, deep learning based segmentation algorithms namely Mask-RCNN and

U-net are used for segmentation of myeloma cells from the bone marrow aspirate slides.

The Mask-RCNN is an instance segmentation algorithm that identifies pixel wise bound-

ary of objects belonging to a particular class and segments them into different instances,

while the U-net algorithm performs semantic segmentation by segmenting all objects

belonging to a class into single instance. However both the algorithms follow a data

driven approach where the algorithm learns different spatial and temporal patterns

from the image without relying on any conventional image processing techniques. The

evaluation metrics used for selecting the best model are accuracy, precision, recall,

specificity, negative predictive value, false discovery rate and f1-score.
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3.6.1 Mask-RCNN (Regional Convolutional Network)

Figure 3.2: Block diagram for the proposed myeloma cell detection using Mask-RCNN

Mask-RCNN is a successor of Faster-RCNN [58] model and it is the latest in the family

of R-CNN [59, 60]. The Mask-RCNN is build on top of Faster R-CNN framework, where

it extends the Faster R-CNN with an extra branch for the object mask prediction which

runs in parallel with the existing bounding box regression branch. The Faster-RCNN

generates the class and bounding box coordinates for every objects in the image and

a FCN (Fully Convolutional Network) generates pixel-wise masks for objects. In this

work, the implementation of Mask-RCNN is taken from matterplot [61, 62]. Figure 3.2

explains the block diagram of the proposed myeloma cell detection using Mask-RCNN.

The input image is initially passed to a deep convolutional network (backbone network

- Resnet50 or Resnet101), which generate feature maps of the image. The RPN (Re-

gion Proposal Network) acts upon these feature maps to create object proposals along

with objectness score. These object proposals are then passed through a Region of

interest (ROI) pooling layer to resize all proposals to same size. Finally, the object
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proposals are given to a fully connected layer that will classify and predict bounding

box for the objects. The fully connected layer has a softmax layer for classification and

a regression layer on top of it for bounding box prediction. The FCN then generates

masks for the positive regions that are selected by classifier layer. The result predicted

by Mask-RCNN will have corresponding class and polygon coordinates of the detected

myeloma cells.

3.6.2 U-net

Figure 3.3: Block diagram for the proposed myeloma cell detection using U-net

The U-net algorithm is an end-to-end FCN that has proven its efficacy on biomedical

image segmentation tasks. The U-net has a symmetric network with skip connections

among each downsampling and upsampling paths with concatenation. The skip connec-

tions helps in passing the local information from downsampling to global information

in upsampling which gives a combination of local and contextual information to predict
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better segmentation. Figure 3.3 shows the block diagram of the proposed myeloma cell

detection using U-net. The U-net mainly has 3 parts: (a) Encoder / downsampling

path: which is a stack of convolution and max pool layers to capture the context in the

image. This is usually a pretrained network (VGG/ResNet); (b) Bottleneck path: that

has two convolutional layers with batch normalization and dropout. This path acts as a

tunnel between the encoder and decoder; (c) Decoder/ upsampling path: which consists

of transposed convolutions or deconvolution to enable precise localization. The image is

upsized and is concatenated with corresponding image from encoder path. This is done

to ensure that prediction is precise by combining information from previous layers. In

this work the implementation of U-net is taken from [63].

3.6.3 Image Annotation

The input to the segmentation algorithms are the raw microscopic images of bone mar-

row aspirate slides and corresponding polygon annotations as a ‘.json’ file. The polygon

annotations for myeloma cells are done manually with reference to the annotation file

provided along with the dataset using VGG Image Annotation software [57]. Figure

3.4 shows the sample images of manual annotation work done.
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Figure 3.4: Manual Annotation of Myeloma cells using VGG Image Annotation software

3.7 Experiments Analysis and Discussions

3.7.1 Dataset Description

The current work uses dataset obtained from the cancer imaging archive (TCIA) [64,

65]. The dataset contains microscopic images of bone marrow aspirate slides captured

according to the standard guidelines [66] from patients diagnosed as multiple myeloma.

The bone marrow smears were prepared by staining with Jenner-Giemsa stain [51, 67].

The images were captured at 1000x magnification with the help of a Nikon eclipse-200

microscope equipped with digital camera. The dataset has a total of 85 microscopic im-

ages of 5 subjects diagnosed as multiple myeloma. All the images were of size 2560x1920
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pixels saved as raw BMP format. The myeloma cells in each image slides of the dataset

is annotated by expert pathologist with arrow marks indicating the abnormal plasma

cells or myeloma cells and is provided as a pdf format file. Figure 3.5 shows sample

images of the dataset with black arrow marks indicating the actual myeloma cells.

Figure 3.5: Sample images of the dataset

Table 3.1: Datasplit proportions used for the experiments

Datasplit Ratio
Number of images
Train Val Test

60/40 51 14 20
70/30 60 10 15
80/20 68 7 10

For the current work, in order to identify the best datasplit ratio, experiments are

performed on different splits of the dataset such as 60/40, 70/30 and 80/20 where 60%,

70%, 80% are for training and remaining 40%, 30%, 20% are split in the ratio of 60/40

into test and validation (val) sets. Table 3.1 gives the number of images in train/val/test

sets for each of the datasplit ratios. The number of multiple myeloma cells and other
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WBC’s in test set of each split are 71 & 264 for 60/40 split, 58 & 229 for 70/30 split

and 41 & 142 for 80/20 split respectively.

3.7.2 Experimental Results and Discussions

In this section, the different experiments performed on the dataset to choose the best

trained model is explained in detail. The Mask-RCNN model is trained on different

train/val/test data split proportions such as 60/40, 70/30 and 80/20. Since, the cur-

rent dataset has lesser number of images, the models are trained by transfer learning

approach [68] from scratch with initial weights as coco weights [69]. Further, image

augmentation is also performed to boost the performance of the models.

Figure 3.6: Loss v/s epoch graphs for 60/40 datasplit ratio using Mask-RCNN model

Figure 3.7: Loss v/s epoch graphs for 70/30 datasplit ratio using Mask-RCNN model
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Figure 3.8: Loss v/s epoch graphs for 80/20 datasplit ratio using Mask-RCNN model

Figure 3.9: Loss v/s epoch graphs for 80/20 datasplit ratio using U-net model

The training is performed by monitoring the training and validation loss with respect

to the number of epochs. Figure 3.6 shows the train, val v/s number of epochs graph for

60/40 split. The train loss decreases gradually and saturates to 0.05 by 400 epochs, but a

huge variation is seen in val loss without saturation. Similarly figure 3.7 shows the train,

val v/s number of epochs graph for 70/30 split, which follows similar trend as 60/40

split. However in figure 3.8, the train and val loss for 80/20 split gives better graph

than other splits, where the val loss also decreases gradually with lesser deviations.

Thus by comparing the graphs obtained for different data split proportions, it can be

concluded that for the current dataset with lesser number of images, 80/20 split to be
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the best datasplit proportion.

Further experiments are performed by selecting 80/20 split as the best datasplit

ratio. In order to compare the performance of Mask-RCNN model, the U-net model

is trained on the 80/20 split by monitoring the train, val loss v/s number of epochs.

Figure 3.9 shows the loss per epoch graph obtained for U-net model, where the training

loss reduces gradually and saturates whereas the val loss does not saturate.

Figure 3.10: Confusion matrices obtained for Mask-RCNN and U-net models

The best trained model is selected based on the least val loss. The confusion matrix

for the test set of 80/20 split is calculated for both Mask-RCNN and U-net models by

comparing with the groundtruth annotations. Figure 3.10 shows the confusion matrix

obtained for the test set for both models on respective best trained models. The Mask-

RCNN model has lesser false negatives when compared to U-net model, but the false

positive obtained for both models are same. Table 3.2 shows the evaluation metrics cal-

culated for both models. From the confusion matrices and evaluation metrics obtained,

it is observed that Mask-RCNN outperforms the U-net model.
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Table 3.2: Evaluation metrics calculated for test set on best trained models of Mask-
RCNN and U-net

Metrics
80/20 split

Mask-RCNN (%) U-net (%)
accuracy 93.99 89.62
precision 82.61 78.95

recall 92.68 73.17
specificity 94.37 94.37

negative predictive value 97.81 92.41
fasle discovery rate 17.39 21.05

f1-score 87.36 75.95

Figure 3.11: Mask-RCNN predictions for test set on best trained model

Figure 3.11 shows the sample detection of multiple myeloma cells for the test set

data by the best trained model of Mask-RCNN. Figure 3.11 (a) shows the groudtruth

annotations by the expert pathologists and figure 3.11 (b) shows the predictions of

Mask-RCNN with the coloured portions in the image identified as the myeloma cells.

Similarly, the predictions of the best trained model of U-net is shown in figure 3.12,

where figure 3.12 (a) shows the groundtruth annotations and figure 3.12 (b) shows the
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respective U-net predictions.

Figure 3.12: U-net predictions for test set on best trained model

Figure 3.13: Comparison of Mask-RCNN and U-net predictions

The comparison of predicted results of Mask-RCNN and U-net models are shown

in figure 3.13, where the coloured segments in figure 3.13 (a) shows the predictions of

Mask-RCNN and the white segments in figure 3.13 (b) shows the predictions of U-net.
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It is observed that U-net model is unable to separate out the clustered plasma cells,

while Mask-RCNN clearly segments out different plasma cells clustered together. Thus

from the comparison, it can be concluded that Mask-RCNN model has competing re-

sults when compared to U-net model for the detection of multiple myeloma cancer cells.
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Chapter 4

Conclusion & Future Work

The application of deep learning based computer vision techniques has now become a

vital component in several researches in the medical filed. This can act as a helping

hand for the doctors and clinicians to provide better diagnosis and treatment. In this

work, we explore the effectiveness of deep learning based detection and segmentation

algorithms on microscopic image datasets such as comet assay images and multiple

myeloma images.

The damage analysis of DNA from comet assays is presently performed using image

processing software tools. The existing open source softwares are limited to accurately

detect, classify and measure the valid comets. The chapter 2 proposes a data driven

deep learning approach using Faster R-CNN algorithm for the detection of valid and

invalid comets from a comet assay image. The proposed model for valid comet detection

is selected by analysing the variation in evaluation metrics for different values of IOU

and training epochs. The experimental results shows that the proposed method gave

competing results when compared with open source softwares open comet and hicomet.
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With the proper identification of valid and invalid comets, it can improve the further

quantification of the comets. The proposed method works well for best IOU set as 0.5,

but the detection of valid comets reduces when IOU is increased. The detection can

be further improved by tuning the sliding window size of RPN network in the Faster

R-CNN model. Also, algorithms like Mask-RCNN, YOLO or SSD can be used as future

work for this module.

The detection of multiple myeloma cells is essential for the diagnosis of multiple

myeloma cancer. In chapter 3, we propose a deep learning based algorithm Mask-

RCNN for the detection and segmentation of multiple myeloma cells from bone marrow

aspirate images. The polygon mask annotations for the current dataset are done with

the help of VGG Image annotation software and groundtruth annotations. Since the

dataset is limited to lesser number of images, we have performed data augmentation

and have used transfer learning approach for training the model. The model was trained

by monitoring the train and validation loss per epoch and the proposed model was se-

lected based on the minimal loss for the validation data. The performance of proposed

model is compared with most popular biomedical segmentation algorithm U-net. The

comparison results shows that Mask-RCNN outperforms U-net with competing results

and also addresses most of the challenges that exist in multiple myeloma segmentation.

Even though Mask-RCNN is able to address most of the challenges specific to myeloma

cell segmentation, it failed to detect some of the under-stained cells where the colour

contrast of cytoplasm and background is lesser. Inorder to establish the supremacy
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of the proposed method, the experiments has to be replicated on a huge dataset and

can then be made as a real time tool for detection of multiple myeloma cancer, thus

reducing the effort of pathologists. Further the results of the Mask-RCNN model can

be improved by tuning the hyper parameters such as anchor boxes, detection minimum

confidence etc.

Hence, the obtained results from both the works shows that CNN based object

detection algorithms such as Faster-RCNN and Mask-RCNN gives competing results

when compared to classical image processing techniques used in literature.
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Abstract

Neuroimaging imaging techniques such as Magnetic Resonance Imaging (MRI) have

improved our understanding of the working of the brain and aided in the early diag-

nosis of brain disorders such as Parkinson’s Disease (PD). These accurate structural

representations in the form of MRI, coupled with the advancements in computational

resources and Machine Learning (ML) techniques, have allowed for easy identification of

biomarkers for automatic diagnosis. Practically, a major limiting factor for ML based

work is the amount of data available. The aim of this work is to identify the slices

of interest in identifying PD and resolve the class imbalance problem in the T2 MRI

modality of PPMI dataset as well. While the data in the larger group (PD) can be

selected in proportion to the smaller group (Normal Cohorts - NC), we have approached

the issue with data augmenting strategies that will aid in the improved classification

of the images by a Deep Neural Network (DNN) in an unbiased manner, which will

be verified for model generalizability using cross validation. We propose the usage of

generative models in identifying and augmenting the slices of interest of NC class data

to meet the PD class. A subject-level classification is performed on the test data with

DNN trained on both real data as well as the synthetic data. Additionally, the best

performing transfer learned deep learning mode is compared with Capsule Network and

evaluated using standard metrics in identifying the model that performs better in PD

classification.
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Chapter 1

Introduction

Parkinson’s Disease, a progressive neurodegenerative disorder occurs due to loss of

dopamine producing neurons in the mid brain region. The loss of neurons occurs due

to accumulation of iron in the brain cells which is captured well by T2 MRI scans [1,2].

Visible motor symptoms are characterized by slowed movement (bradykinesia), stiffness

in limbs, slurred speech and restricted movement [3]. Being a progressive disorder, the

clinical motor-symptoms is broken into 5 stages where the condition deteriorates over

time. Neuroimaging techniques like Magnetic Resonance Imaging (MRI) scan, Positron

Emission Tomography (PET), Computed Tomography (CT) and Single Photon Emis-

sion Computed Tomography (SPECT) serve to be a potential biomarker by capturing

the morphological changes in the brain. These techniques prove to be useful in early

diagnosis as the visible symptoms of the disease start manifesting evidently only af-

ter 60% of the dopaminergic neurons are atrophied [4]. SPECT and PET scans are

effective in detecting the presence of disease from an MRI only when the disease has

advanced to 80% of critical stage [5]. MRI is the most preferred as it does not involve

harmful radiations and is also effective in detecting Parkinson’s Disease. Deep Learning
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(DL) models and Artificial Intelligence (AI) can be leveraged to learn and identify the

features of an image to assist medical personnel in efficient medication to patients and

in performing surgeries as well.

Subject level Classification

Classifying imaging results at the subject level is the requirement for disease diagnosis.

The AI algorithm in use can classify a subject as affected by disease or undiseased

(Normal Cohort). This will also help in easy interpretation of the results and does not

require much technical expertise.

Region of Interest

In deep learning, the model’s performance improves based on the availability of a large

dataset for training. However, the quality of images and features to be learnt is the

basic necessity for a good model performance. Since there are multiple slices in an MRI,

certain slices could be less informative than the others. Extracting and identifying the

slices which correspond to the mid-brain is of importance and the Region of Interest in

this study.

Model generalizability

When we test the model performance on 1 split of test data, it gives an understanding

of the model performance on that particular test split. This is influenced by factors

such as classes of image in the split, quality of images, etc. On using cross-validation,

the model is validated on k folds of the data [6, 7] which gives a broader insight into

the model’s performance over unseen data as well.

Nevertheless, one of the major problems faced for reliable performance of a Deep Learn-
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ing model is lack of sufficient data to build a fair and realistic model to be deployed in

real time critical scenarios. This can be overcome by data augmentation where modified

images of the existing data is added to increase the number of samples of the classes

having insufficient images. This acts as a regularizer thereby prevents overfitting of

the DL model. While simple data augmentation techniques involve a simple rotate and

crop of the images, models trained on simple augmented data might not very effective

in handling new kinds of pattern in data. Generative modelling that is gaining a lot of

momentum in recent years, produces realistic images whose distributions are similar to

the original image distribution. This allows creation of new variations in patterns of the

features learnt expanding the diversity of the images generated. In our proposed work,

we aim to use generative modelling to overcome data insufficiency, which is explained

in the further sections.
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Chapter 2

Literature Survey

One of the earliest works in identifying Parkinson’s Disease using Convolutional Neural

Networks (CNN) was done by [5]. Their work utilized the AlexNet architecture to iden-

tify PD from selected slices of T2 MR images. However, there is no clear demarcation

on the range of slices used in the work to detect PD from T2 MRI. [8] have used sim-

ple data augmentation techniques such as flip and rotate, to overcome class imbalance

between PD and NC class. However, the augmentation process is done before splitting

the data into train and test sets that will result in data leakage. Further, an ensemble

deep learning model is used to classify Parkinson’s Disease from T2 MR images and

results are discussed at the slice level. In [1], the model is evaluated at the subject level

for T1 images using a 3D CNN to identify the presence of Parkinson’s Disease, and

model generalizability is verified using k fold cross-validation. Classification is done at

the subject level on T1 MRI images. There has been no initiative in evaluating deep

learning architectures at the subject level on T2 MRI images with the view of verifying

the model’s generalizability to the best of our knowledge.

GANs generate superior images in terms of quality and possess the potential to
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generalize new patterns while maintaining the structural information [9]. The authors

have used GAN in improving the T1 MRI dataset to identify PD. GAN is used to

maximize the results for PD classification. LeNet 5 classifier performance is compared

on training with and without synthetic images. PSNR is the metric used in evaluat-

ing quality of generated images. The classification metrics of the model trained with

data augmentation shows a 3% improvement in accuracy when compared to the model

trained without data augmentation. Another application of using GAN in medicine

is in the early detection of diabetes through Diabetic retinopathy. Diabetic retinopa-

thy is a complication that develops due to diabetes which hinders eyesight. Being a

leading cause of blindness, it occurs in those suffering from diabetes for a prolonged

period. To generate realistic samples of the diseased retinal image samples, synthetic

images of the proliferative class are produced using Generative Adversarial Networks

(GANs). Results indicate that the generated images are as competent as the real im-

ages of the proliferative class [10]. Simple data augmentation techniques using cropping

and rotation lack the generalization abilities as the model is not exposed to a variety

of different patterns in images. This is overcome by using GANs to generate synthetic

data which have a good generalization capability while capturing the data distribu-

tion [11]. DCGAN is found to more stable during training, in comparison to the vanilla

GAN architecture. It is used to generate images for 3 stages of Alzheimer’s Disease

from PET scans. Metrics used to assess image quality is mean PSNR and mean SSIM.

Performance of DCGAN and WGAN image generation with respect to size of image

generated for different MRI modalities along the sagittal axis [12]. It is observed that
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DCGAN generated better images for a smaller dimension (64*64) and WGAN can gen-

erate better images for bigger dimensions (128*128) while maintaining the sequence

specific texture and avoiding mode collapse which occurs in DCGAN. Nevertheless,

artefacts remain in the synthetic images. Visual Turing Test is used to analyse the

image generation of both the generative architectures.

Variational Autoencoder (VAE) is another generative model using latent vectors to

represent the essential information of the input images which will be used for recon-

struction of images. Speech impairment is one of the characteristic biomarkers of PD

and an Autoencoder Neural Network trained to learn the features and differentiate be-

tween the speech recording of a PD subject from an NC subject is described in the work

by [13]. In an attempt to identify the optimal size of a latent vector dimension, [14]

have used Variational Autoencoder to determine the effect of latent variable size for

the reconstruction of new MNIST images. A latent vector of size 10 captures all the

possible variation in styles of the digits which is not so in the case of smaller latent

vector size. [15] used Deep Variational Autoencoders as a feature extractor to identify

ADHD from fMRI. The latent variables generated are used in estimating Functional

Brain Networks. A robust Variational Autoencoder model is used by [16] to represent

the complex, high level features using latent variables used to identify lesion from brain

MRI images Capsule Networks are known to perform better than traditional neural

networks as they capture the spatial and temporal relationship in features of the data.

The following 2 works based on non-medical [17, 18] and medical data [19] indicate

better classification of images due to pre-processing. Hyperparameters tuned are batch
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size, number of epochs, learning rate and filter size, channels of the convolutional layer.

Input images are scaled down to 28*28 to reduce number of computational parameters.

It does not seem to cause loss of prominent features. From the literature the powerful

ability of GANs and VAE to generate realistic synthetic images is exhibited. As dis-

cussed, they are widely applied in medical imaging to enhance the performance of deep

learning model. We aim to extend and experiment its application on generating images

to improve detection of PD as well.

Therefore, we propose to generate and compare the quality of synthetic T2 MRI of

Normal Cohorts, which is imbalanced when compared to number of PD subjects using

3 widely used generative models – DCGAN, WGAN and VAE.

The potential of using Capsule Network has improved drastically over time and we

propose to use the architecture to identify its prospective as a classifier in PD detec-

tion. Eventually we plan to compare the performance of transfer learned DenseNet201

architecture with Capsule Network. The test results are evaluated at the subject level

which will be of assistance in the real time scenario.

To the extent of our knowledge, there has been no published work to generate

MRI images for T2 modality using the mentioned generative models or using Capsule

Network as a classifier architecture. Also, classification of test data at the subject level

using DNNs have not been addressed in the literature so far.
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2.1 Problem statement

• Identifying Region of Interest (RoI) pertaining to the detection of Parkinson’s

disease

• Verify the performance of CNN model in terms of model generalizability to classify

the disease

• Classification of predicted results at the subject level

• Overcoming class imbalance using generative techniques

• Compare DL model performance with and without data augmentation

2.2 Objectives

• Experimenting with the Region of Interest to find the optimum slice range con-

taining important feature necessary in identifying PD

• Using Stratified Cross Validation to verify CNN model generalizability

• Overcoming class imbalance by implementing data augmentation of Normal Co-

hort images using generative techniques on ROI

• Compare the synthetic image generative capability of generative models – WGAN,DCGAN

and Variational Autoencoders.

• Compare performance of test data classification by DL models with and without

data augmentation
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Chapter 3

Background

3.1 MR Images

An MRI in general contains multiple slices (Fig.3.2) which capture deformities or abnor-

malities in various sections of the body – in our case, the brain layer wise. Depending

on the scanner used the number of slices varies. The 3 primary imaging planes of

an MRI images are Axial, Sagittal and Coronal as shown in Fig.3.1. The magnetic

fields produced by the scanner is manipulated to produce distinct types of image –

T1 weighted MRI and T2 weighted MRI. The bright or white parts on a T1-w MRI

represents proteins and lipids while the same in a T2-w MRI represents water con-

Figure 3.1: T2 MRI of a subject consisting of 48 slices
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Figure 3.2: 3 planes of MRI a) Axial b) Sagittal c) Coronal (clockwise direction)

tent depicting conditions like Inflammation, Tumour, Haemorrhage, Infection (which is

represented by the dark parts in a T1-w MRI).

3.2 Generative Modelling

Generative models have a probability distribution associated with its latent input vari-

able. They learn the posterior distribution P(Y—X) via Bayesian rule where X is the

input variable and Y is the variable representing reconstruction. Inputs to the GAN

generator and VAE decoder have distributions. VAE models explicitly learn likelihood

distribution P(X—Y) through loss function. GAN does not explicitly learn the likeli-

hood distribution, instead learns it through generator fooling the discriminator. GAN

generators aim at minimizing the difference between P(X) and P(Z—Y). Z is the fake

or synthetic images that are generated by the model [23]. The latent variable in GAN

is predefined which is the noise as input to generator, while in VAE it is learnt while

training by minimizing of loss function which is the sum of kl divergence loss and re-

construction loss. In VAE, the encoder model is the discriminator and decoder model

are the generator.
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Chapter 4

Proposed Work

The overall methodology followed in this work is described which is broadly classified

into 3 parts:

1. Pre-processing techniques are followed to bring the data to desirable format.

2. Identifying ROI of T2 MRI which will be used in training using 3 CNN architectures.

Results are classified and compared at at the subject level.

3. Images of NC are synthesized using the identified ROI using with 3 generative

architectures to overcome class imbalance. Performance of the best classifier model

with without data augmentation is compared using standard metrics. The same is

performed for Capsule Network and the performance of the CNN and Capsule Network

is compared to identify the model that performs better over the test data.

4.1 Dataset Description

Parkinson’s Progressive Marker Initiative (PPMI) dataset [20] which is an open database

initiative for PD detection from signals and images is used in the proposed work. T2

weighted MRI images of 100 subjects are used in the 2nd part of the work - to identify
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Table 4.1: Data Description

Modality Magnetic Resonance Imaging (MRI)
Research Group Normal Cohort and Parkinson’s Disease
Visit Baseline
Acquisition Plane Axial
Acquisition Type 2D
Field Strength 3T
Slice Thickness 3mm
Scanner Manufacturing Siemens Trio Tim scanner
Pixel Spacing X=0.9,Y=0.9
Weighting T2

ROI in detecting PD, and 240 subjects in the 3rd part of the work - using generative

models to produce synthetic images from the ROI. Scans are taken along axial axis

using Trio Tim scanner. The chosen sample data of T2 MRI image modality has 48

slices for each subject, The MRI images which is split in 80:20 ratio for training and

testing, respectively. Of 100 subjects, 40 PD and 40 NC subjects are used for training

with the remaining for testing. Of 240 subjects, 116 PD subjects and 84 NC subjects

for training and 38 subjects’ images with equal proportion of PD and NC for testing.

A detailed description of the data is given in Table 4.1.

4.1.1 Data Preprocessing

Image pre-processing consisting of 3 parts – Bias Field Correction (BFC), Skull stripping

and Intensity normalization is initially done for all the images (see Fig.4.1). BFC

removes the non-uniformities of intensity in the MRI [21]. Skull stripping extracts the

brain tissue by eliminating region belonging to the cranium to reduce overload in feature

extraction [22]. Intensity normalisation is done to bring in the range of image values
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Figure 4.1: Image preprocessing a) Bias Field Correction b) Skull stripping

between 0 and 255 which helps the model. The images are stacked to form a 3-channel

image to ensure compatibility with Keras deep learning models. The processed images

are split into training and testing before data augmentation to avoid data leakage.

4.1.2 Evaluation Metrics

Metrics used to evaluate DL classifier are Accuracy, Precision, Specificity (True Negative

Rate), Sensitivity (True Positive Rate) and F1 score. Specificity determines the number

of predicted NC subjects correctly predicted. Higher specificity indicates lesser number

of mispredictions of a negative subject to be diseased. Sensitivity or Recall determines

the number of positive subjects correctly predicted. Higher sensitivity indicates lesser

chances of missing to detect the disease when it is present. Precision determines the

number of positive predictions that are actually true. It determines the number of

subjects wrongly classified as the negative class. F1 score gives the harmonic mean

which is a weighted arithmetic mean of precision and recall.

The metrics used to evaluate the quality of synthetic images generated are mean

Structural Similarity Index Measure (SSIM) and mean peak Signal to Noise (PSNR)
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ratio [9, 11]. SSIM measures the similarity of a synthetic image with the original data

structure. Luminance, Contrast and Structure are considered while determining the

same. Mean PSNR measures the lossy reconstruction of an image indicates presence of

noise while comparing the image pixels with input data.

SSIM =
(2µxµy + C1) + (2σxy + C2)

(µ2
xµ

2
y + C1) + (µ2

xµ
2
y + C2)

(4.1)

,where x is the synthetic image and y is the original image. µx and µy are the average of

x and y respectively. µ2
x is the variance of x, µ2

y is the variance of y, xy is the covariance

of x and y. C1 and C2 are the constant values which is a stabiliser term.

PSNR = 20 log10
(max(y))2

1
n
Σ(yi − (yi))2

(4.2)

,where n is the number of pixels in the image and i is the iteration index from 1 till

n. The numerator is maximum pixel value of the original image and denominator

represents the mean squared error of original and synthetic image distribution.
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Chapter 5

Experiments and Results

5.1 Classifier Architecture

The overall methodology followed in this subsection’s work is shown in Fig.5.1. Transfer

learning of deep learning architectures - VGG19, DenseNet121 and Densenet201 are

experimented with and their performance is recorded to find the best architecture for the

chosen dataset. All layers of DenseNet201 and DenseNet121 are trained, while for VGG-

19 only the last 3 layers of the architecture are trained to get a comparable performance.

Over the best performing deep learning architecture, we have experimented on the

range of minimum number of slices that contains the necessary features for the model

to learn to identify PD. The penultimate layer is removed (include top = “False”).

Fully connected layers and dropout layers are added as shown in Fig.5.2. Dropout, a

regularisation parameter is added to prevent overfitting. The number of hidden layers

and neurons in each layer has been obtained on an experimental basis.

Subject level classification

The predicted result for a slice using the sigmoid activation from the final layer of
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Figure 5.1: Methodology followed in classifying subjects using CNN models

Figure 5.2: Modifications done to the deep learning architectures used

the deep learning architecture is a probability value ranging between 0 and 1. With a

confidence value of 50%, the predicted probability for every slice is classified into either

of the classes (0 or 1) which is represented as a vector ‘pred’. To generate a subject

level decision on the patient, maximum voting is applied which can be denoted as

y = argmax(pred[i]) (5.1)

where the index i is the number of slices per subject and y is the resultant scalar

value which is either 0 or 1 indicating the presence of disease in a subject. For the test

data, weights trained on the training data are used on the same slices as in training

slice set. Fig.5.3 represents the same in a structured approach of a flow diagram.
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Figure 5.3: Logic followed in classifying results at the subject level

Figure 5.4: Average pixel intensity for 48 slices of 80 subjects

Region of Interest

From Fig.3.2, it is clear that the first few slices of the MRI contain mostly black

pixels and lack any information pertaining to the brain tissue. Slices towards the end

do not have any information about the midbrain which has the features indicating PD.

Hence, we hypothesize that slices in the middle range are of importance in this study.

On calculating the average pixel intensity of every slice of the 80 training subjects as

shown in Fig. 5.7, it is noted that slice range between 15-42 has pixels of intensity above

the mean average pixel intensity value represented by the red line, which is considered as

a threshold. The slice range which satisfies this threshold is expected to be the Region

of Interest. To validate this, we have compared the performance of DenseNet201 on all

the 48 slices and with just the selected ROI slices. On experimentation, it is observed

that the slice range of 20-40 gave better results (see Table 5.1). Therefore instead of
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Figure 5.5: Confusion matrix representing classification of test results using model
trained on: a) 48 slices of 80 patients b) 20 slices of 80 patients

Table 5.1: Comparing performance of DenseNet201 on tuning number of slices

Number of slices

per subject

Model performance over cross validation Test results

Specificity Sensitivity F1 avg
F1 std

dev
Accuracy F1 score

48 0.89 0.66 0.708 0.026 55% 0.69

20 0.88 0.81 0.852 0.011 70% 0.7

using all 48 slices, only 20 slices of each subject is used. This leads to better detection

of PD as a lot of unwanted information gets removed.

The model trained on 48 slices has high Specificity as it learns the features of an

NC better and has low Specificity since 5 PD subjects were misclassified as a Normal

Cohort. On the other hand, using 20 slices improves the performance. There is notable

increase in the values of F1 average score and a reduced variation in the standard

deviation. The Sensitivity and Specificity values are balanced, meaning the model is

able to differentiate between NC and PD.

Model generalizability

To determine the generalizability of the model performance over unseen data, 5-fold

stratified cross validation is used resulting in each fold having 20% of the data in
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Figure 5.6: Stratified cross validation shown over 1 sample fold

validation and remaining data for training. By using Stratified validation, the NC

and PD patients in every fold is equally distributed (see Fig.5.6) and hence give us a

good idea on the performance of the model on detecting both classes. The 5-fold split

is implemented with a fixed seed number so that the performance can be compared

for the 3 different architectures. The metric used to evaluate the performance over

each fold is F1 score. Hyperparameters are tuned in a way so as to maximize the F1

average value across the folds and minimise the F1 standard deviation. By doing this

the generalizability of the model will be achieved.

The tuned hyperparameter values for each of the model as specified in Table 5.2.

Different optimizers like Stochastic Gradient, Adam, AdaBoost and Adagrad have been

tried, and Adam was identified as performing the best in backpropagating the loss

during training. Binary CrossEntropy loss function is used as we are dealing with a

binary classification problem. Addition of a dropout layer enables in training the model

for more epochs by which the right features are learnt. This prevents the model from
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overfitting. Also, a smaller learning rate is required for the model to be able to identify

the difference in brain features of an image having PD and NC. Larger learning rates

tends to make the model to be biased towards one particular class. e−4 is the learning

rate for DenseNet201 and e−5 is the learning rate for the other 2 architectures. While

evaluating the models on the test data - 20 slices of 20 subjects were tested using the

weights learned by the model during training,it is observed that all the 3 models perform

as well as the corresponding architecture’s crossvalidation results during training

To identify the suitable architecture for the given dataset, 20 slices of 80 subjects

have been trained on 3 deep learning architectures and their performances compared.

Over the 5 folds during cross validation, we can observe that Specificity of VGG-19 is

higher than its Sensitivity which means that it identifies Normal Cohorts better than

PD patients. DenseNet201 maintains optimal trade-off between identifying diseased

and non-diseased images, i.e Sensitivity and Specificity are in a similar range. And the

F1 average score of DenseNet201 is high and standard deviation is the least amongst

the architectures. The metric values of cross validation during training are specified

in Table 5.3. DenseNet201 is the architecture that generalises data the best amongst

the 3 architectures while DenseNet121 performs the least. While evaluating the models

on the test data - 20 slices of 20 subjects were tested using the weights learned by

the model during training,it is observedthat all the 3 models perform as well as the

corresponding architecture’s cross-validation results during training (Table 5.4).
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Table 5.2: Hyperparameter tuning for the three deep learning architectures

Architecture Learning Rate Dropout Number of epochs

VGG19 e−5 0.5 10

DenseNet121 e−5 0.4 8

DenseNet201 e−4 0.2 5

Table 5.3: Comparing model generalizability for training data on ROI slices

Architecture Model performance over 5-fold CV

Specificity Sensitivity F1 avg F1 std

VGG-19 0.88 0.74 0.84 0.06

DenseNet121 0.68 0.73 0.76 0.08

DenseNet201 0.81 0.88 0.85 0.01

Table 5.4: Comparing model performance over test data

Architecture Model performance over test data

Specificity Sensitivity Accuracy F1 score

VGG-19 0.80 0.60 70% 0.73

DenseNet121 0.60 0.90 70% 0.75

DenseNet201 0.70 0.70 70% 0.70
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Figure 5.7: Adversarial networks a) Encoder architecture b) Decoder architecture

5.2 Generative Modelling

In this section,the techniques used to generated synthetic MR images from 3 models is

described in detail.

A noise vector of size 100*1 sampled from normal distribution is the input to the

generator of DCGAN which generates images of shape 128*128*3. The discriminator

receives real and synthetic images as input and based on the predictions made, the loss

function is continually updated. Batch normalisation and Leaky ReLU help in pre-

venting overfitting. Binary cross entropy is the loss function used with label smoothing

assigned a value of 0.1 to allow some margin of probabilistic learning of the error ??.

Architecture of DCGAN used is shown in Fig.5.7. The learning rate used is 0.001 and

the model is trained for 500 epochs. The quality of images generated over different 5
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Table 5.5: Metrics assessing quality of generated images by DCGAN

Batch size Mean SSIM Mean PSNR
8 64.38 66.50
16 64.70 67.16
32 65.32 67.21
64 65.48 67.31
128 61.20 62.34

Table 5.6: Metrics assessing quality of generated images by WGAN

Batch size Mean SSIM Mean PSNR
8 60.77 66.25
16 61.30 66.24
32 60.95 66.52
64 59.86 66.7

different batch sizes ranging between 8 and 128 is experimented. It is noted that as the

batch size increases the quality of images generated by DCGAN improves. However,

beyond batch size 64 the quality starts decreasing. The same is reflected in Table 5.5.

A boxplot is constructed to show the variance in SSIM values (Fig. 5.8). Sample images

generated with the best batch size for DCGAN is visualised at a few epochs in Fig. 5.9

which show the gradual improvement in reproducing features of the brain MRI. Time

taken for each epoch on an average is 2.5 seconds.

DCGAN tends to have mode collapse i.e., the diversity in patterns of synthetic

images is limited. The same is reflected in the fluctuating loss curve of DCGAN in

Fig.5.10. This is overcome by replacing the loss function with Wasserstein loss or Earth

Mover distance (EMD). It minimises the difference in distribution between original and

synthetic images. To use EMD, the norm of the gradient must be a maximum of 1

at every point. This can be accomplished using gradient penalty (GP). Therefore, in
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Figure 5.8: Box plot representing the SSIM spread for synthetic images generated over
different batch sizes for DCGAN and WGAN respectively

Figure 5.9: Sample images generated for a batch size 64 by DCGAN
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Figure 5.10: Caption

Figure 5.11: Sample images generated for a batch size 16 by WGAN

our work, we use WGAN-GP. Batch sizes are varied as in DCGAN and batch size 16

is found to give best results. Comparison of the image quality metrics over different

batch sizes are represented in Table 5.6 and visually depicted in Fig.5.8. There is a

significant improvement in images produced by WGAN-GP when compared to DCGAN

(Fig. 5.11). However, the converse is reflected in the image quality metrics. The mean

values of SNR and SSIM of WGAN is lesser than DCGAN. The training is stable and

there are lesser fluctuations in the loss curve as seen in Fig. 5.10. The drawback of this

architecture is that the average time taken for each training epoch is 8.7 seconds.

The adversarial architecture is prone to artefacts like checkboard effects which cause

a grainy appearance of the synthetic images. We have tried rectifying this by using Near-
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Figure 5.12: Replacing Transposed Convolution with Nearest Neighbour Convolution
a) DCGAN b) WGAN

est Neighbour (NN) Convolution instead of Transposed Convolution in the generator

ref25. The difference in image quality while using NN convolution is seen from Fig.

5.12. The metrics improve by 2% when replacing Transposed Convolution with Nearest

Neighbour Convolution.

Variational Autoencoder represents the input data using the latent vector in a prob-

abilistic manner. The encoder outputs a latent vector where each variable represents

a probability distribution. The input data is encoded in a compressed format using

the mean and variance of the data. The decoder samples values from the latent vec-

tor probability distribution and reconstructs the data while being able to maintain the

pattern diversity of images. This is ensured by the loss function which comprises of

reconstruction loss and Kullback Leiber loss. Kl loss maximises the similarity in dis-

tribution between real data and synthetic data. The encoder and decoder architecture

used in this work is shown in Fig.5.13. The image is resized into a shape of 128*128*1

to reduce computational costs.

Latent vector dimension is experimented with to find the suitable size to generate

NC images. The comparison of sample images produced for dimension 3, 35 and 500 is

shown in Fig.??. Visually, the quality of images and the pattern decreases with increase
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Figure 5.13: Encoder and Decoder architecture of Variational Autoencoder

Table 5.7: Metrics assessing quality of generated images by VAE

Latent space dim Mean SSIM Mean PSNR
3 68.2 68.62
35 66.3 67.67
500 66.8 67.31
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Figure 5.14: Sample images generated by Variational Autoencoder for dimensions 3,35
and 500

Figure 5.15: Box plot representing the SSIM spread for synthetic images generated over
different batch sizes for VAE

in vector size (Fig.5.14), which is reflected in the loss curve and kl loss curve as well

(Fig.5.16). Choice of the suitable latent vector dimension is then ascertained through

the mean SSIM and PSNR metric values (Table 5.7).

The tuned hyperparameters for this model architecture are a batch size of 32 and

the standard Adam optimizer with a learning rate of 0.001 is used. The model is trained

for 200 epochs and average time taken for each epoch on average is 5 seconds.

5.2.1 Classification using deep learning models

DenseNet201 architecture pretrained on ImageNet weights, is used in our work as the

model generalizability is verified and it is sensitive in detecting both NC and PD classes
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Figure 5.16: Total loss curve and kl loss curve for Variational Autoencoder over the 3
latent vector dimensions experimented

Figure 5.17: Confusion matrix generated by DenseNet201 model trained a) without
data augmentation ; synthetic images from b) VAE c) DCGAN d) WGAN

equally well. All the layers of the models are trained and the final layers are tuned to

suit our classification problem. A batch size of 32 is used with an Adam optimizer

having a learning rate of 0.0001. The weights of the model with the best accuracy over

validation set is saved and used on the test data set. The performance of the classifier

with and without data augmentation of synthetic images from the 3 generative models

is compared and analysed to comprehend the performance. Confusion matrix in Fig.

5.17 represents the number of subjects correctly classified and the misclassifications

as well. Precision and F1 score is calculated for each of the class from the confusion

matrix to get a deeper understanding of the model’s diligence. Being a binary class

problem, specificity of PD class is the sensitivity of NC class and vice versa, so we have
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Table 5.8: Comparing DenseNet201 classifier model performance with and without
augmentation

Specificity Sensitivity Precision F1 score Accuracy
PD NC PD NC

Real 0.58 0.63 0.6 0.61 0.61 0.59 0.60
VAE 0.68 0.63 0.66 0.65 0.64 0.66 0.66
DCGAN 0.57 0.68 0.62 0.64 0.65 0.62 0.63
WGAN 0.68 0.74 0.7 0.72 0.71 0.7 0.71

mentioned the Specificity and Sensitivity only for the PD class in Table 5.8. Considering

PD as the positive class, VAE and WGAN have least number of False Positives (FP)and

highest number of True Negatives (TNs). They have similar performance in terms of

detecting NC class. DCGAN has an improved performance when compared to model

without data augmentation, in detecting PD class alone. WGAN has highest number

of True Positives (TPs) and least number of FNs. Next comparable performance is

with images generated by VAE. Images generated by DCGAN are identified more as

PD class (FNs). Performance over test data with model trained after augmentation

of all the 3 generative models show a considerable improvement in metrics. Model

trained with augmentation of WGAN and real images predicts the negative class with

a specificity of 0.68 which is better than specificity of augmentation with DCGAN. It

has a higher sensitivity than specificity indicating it identifies PD class better than NC

class. Precision for NC class is slightly higher than PD class for both models trained

with and without data augmentation. WGAN has the highest precision for both PD

and NC classes is highest followed by VAE. F1 score is highest for PD class followed by

F1 score for NC by VAE.
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Table 5.9: Architectural details of Capsule Network

Layer Output shape
Input Layer (10,224,224,3)
Conv2D (10,222,222,256)
PrimaryCap Conv2D (10,107,107,256)
PrimaryCap reshape (10,366368,8)
Primarycap squash (10,366368,8)
DigitCaps (Capsule Layer) (10,2,16)
Input layer (None,2)
Mask (10,32)
Capsnet (10,2)
Decoder (224,224,3)

The model trained with augmented Normal Cohort images generated by WGAN

gives the best results in classification as the FPs and FNs are minimal which is important

in medical field. However, VAE does have a good scope, as it is capable of generating

new images with lesser artefacts unlike in GANs. Artefacts in synthetic images hinders

the subtle learning of features learned by model during training.

Architecture tuned for Capsule Network is shown in Table 5.9. Learning rate is

varied between 0.1 and 0.0001. Number of epochs is varied between 10 and 30. Batch

size is varied from between 8 and 32. The parameters chosen based on best performance

is 0.001 for Learning rate and a smaller batch size of 10. The number of filters is varied

from 64 to 256 and kernel size is varied between 3 and 9. It is seen that 128 filters with a

size of 3*3 gives the best result. 32 Capsules used are of dimension 8 each, with squash

activation function connected to the convolutional layer. The model is trained for 30

epochs and weights of the best model is saved based on improvement in validation

accuracy which is used to evaluate model performance over the test data. Training
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Figure 5.18: Confusion matrix generated by Capsule Network model trained a) without
data augmentation; synthetic images from b) VAE c) DCGAN d) WGAN

images from VAE took the longest time; images from the adversarial models took

almost the same time to train. 200 synthetic images from each of the generative model

is augmented and the CapsNet model trained. Beyond 200 images, the performance of

the model saturates The confusion matrix generated by using CapsNet model trained

with real and synthetic images on test set is shown in Fig. 5.18. Model trained on

synthetic images from VAE have least number of FPs and FNs and highest number of

TPs and TNs on the test data. Testing of model augmented with WGAN synthetic

images yields the same performance over NC predictions. Number of TPs and FNs of

augmentation with WGAN follow closely to augmentation with VAE. All the generative

models identify the TPs which is the PD class with least mispredictions than the NC

class. WGAN augmented models minimise the gap of correctly predicted NC and

PD subjects. DCGAN has a slight improvement in classification of PD subjects, but

performance in classification of NC subjects remains the same as in a model trained

without data augmentation. Specificity of VAE and WGAN is equal and highest (5.10).

Sensitivity is highest for VAE followed by WGAN. WGAN has the highest precision
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Table 5.10: Metrics to evaluate Capsule Network architecture with and without data
augmentation

Specificity Sensitivity Precision F1 score Accuracy
PD NC PD NC

Real 0.53 0.63 0.57 0.59 0.6 0.56 0.58
VAE 0.63 0.84 0.7 0.8 0.76 0.7 0.74

DCGAN 0.53 0.69 0.6 0.62 0.64 0.57 0.61
WGAN 0.63 0.79 0.75 0.68 0.77 0.65 0.71

amongst the generative models as lesser number of PD subjects are misclassified as NC

subjects. Precision of detecting PD subjects is higher than detecting NC subjects. On

the other hand, VAE has the highest precision in detecting NC subjects and precision

of VAE for NC subjects is more than that of PD subjects. A similar trend follows for

the F1 score. VAE has maximum accuracy closely followed by WGAN. Model trained

with synthetic images from VAE gives maximum correct classifications (TPs and TNs)

and least misclassification (FPs and FNs).
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Chapter 6

Conclusion

Initially, the data has been split into train and test set at the subject level which avoids

data leakage. The slices that are most essential in identifying the presence. of Parkin-

son’s Disease is our Region of Interest, which are found to be in the slice range of 20-40.

DenseNet201 is concluded to be the model that generalises best amongst the 3 archi-

tectures as indicated by the metrics. Training a model on 20 slices instead of 48 slices

shows improved performance in detecting Parkinson’s Disease. The test results are

classified at the patient level so that the easily interpretable model can be of assistance

to the medical personnel. There is a significant increase in performance as indicated by

the metrics when using models trained with augmentation over test data. The slices of

interest of Normal Cohort subjects are generated using 3 generative models and their

performance over different batch sizes are compared for GANs and latent vector dimen-

sion for VAE. Based on mean SSIM and PSNR, it is observed that DCGAN generates

the best quality images for a batch size of 64, beyond which it deteriorates. WGAN

generates images of better quality without mode collapse for a batch size of 16 and

pattern diversity in the images are captured well. VAE has the best metrics for a latent
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vector dimension of three and, the pattern diversity and image clarity reduces with

increase in latent dimension Comparing the image quality metrics for the adversarial

models, the magnitude of values for DCGAN is higher than WGAN. Quality metrics

of VAE is higher than the adversarial models. However, when augmenting the images

and training the deep learning model, WGAN augmented DenseNet architecture has a

superlative performance closely followed by model trained with VAE augmentation. For

CapsNet architecture, the VAE augmented model performs better over the test results.

In both cases, model with synthetic images from DCGAN exhibits a mediocre perfor-

mance. This is possibly due to the lack of pattern variation in the images generated by

the model. Accuracy using CapsNet architecture is 3% more than the accuracy using

DenseNet201 as classifier. From the results generated, it is noticeable that VAE which

has not been explored much with respect to PD classification has significant potential

as a generator model. While using DenseNet201 as a classifier, although augmentation

with WGAN gives the best performance in terms of all the metrics, VAE is a close

contender where overfitting does not occur in the DenseNet model. As future work,

the generative ability of the models can be extended to the PD class for experimenta-

tion. It might be required as the intricate features that define PD has to be generated

accurately. Different modalities of MRI can be experimented [26] in the perspective

of generating synthetic images of high quality. Capsule GAN [27] and VAEGAN [29]

are the other architectures which have a high potential produce better and realistic im-

ages. CapsuleGANs combines the adversarial abilities of GANs with spatial mapping

of features and VAEGANs is expected to generate images without artefacts and able
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to generate new features in accordance with the original distribution.
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Letter of Employment 

 

 

Date:  19th May 2021 

 

To: 

U. Vamsi Krishna 
B2/2 Rites flats Ashok Vihar phase-3,  
New Delhi-10052 
 
 
 
Dear Vamsi Krishna, 

This has reference to your position as Junior Data Scientist, CBMM Supply, Services and 

Solutions Pte. Ltd, Singapore. We, after discussions with you and assessing the company’s needs 

and requirements, would like to appoint you effective June 1st 2021.  

 

We are happy to offer you this position in our company on the following terms and conditions: 

 

 

1.  Date of Appointment 

Your appointment shall be effective from 1st June 2021, and your assignment 

will be based at Chennai. Remote work arrangements can further be agreed 

upon in subsequent discussions. 

 

 

2. Salary and remuneration 

Your salary and remuneration will be as per the details herein enclosed under 

Annexure A. 

 

 

 

3. Other Work 

This is a full-time employment with the company and you shall devote yourself 

exclusively to the business of the company.  

 

 

 

 



 

 

 

4. Transfer and Deputation 

You are liable to be transferred in such capacity as the Company may from time 

to time determine to any other location of the company in the world, without  

any change in terms and conditions of employment, at the sole discretion of 

the Board of Directors. In such a case, you will be governed by the rules and 

service conditions applicable to new assignments and locations.  

 

 

 

5. Confidential Information 

You will not at any time without the consent of the Board of Directors, disclose 

or divulge or make public except on legal obligations any information regarding 

the company’s affairs or administration or research carried out whether the 

same may be confined to you or become known to you in the course of your 

service or otherwise. 

 

 

 

6.  Conflict of Interest   

It is intended to avoid conflict between your interest as an employee, and the 

interest of the Company in dealing with suppliers, customers and all other 

organizations or individuals doing or seeking to do business with the Company. 

Further, if any Conflicts of Interest do arise in future, you will promptly report 

the same to the management immediately. 

 

 

 

Noted below are a few examples of Conflict of Interest: 

 

 

a. You or any dependent member of your family is not to have an interest in any 

organization, which has business dealings with the company, where there is  

an opportunity for preferential treatment to be given or received. 

 

b. You or any dependent member of your family are not to buy/sell or lease any kind of 

property, facilities or equipment from or to the Company or any affiliate or to any 

Company, firm or individual that is or is seeking to become a contractor, supplier or 

customer, except with the knowledge and consent of the Management. 

 



 

 

 

c. You are not to serve as an officer, director or in any other management capacity or as 

a consultant to another company or organization doing or seeking to do business with 

the Company or an affiliate except with the knowledge and consent of management of 

our Company. 

 

d. You are not to use or release to a third party any data on decisions, plans, competitive 

bids or any other information concerning the Company, which might be prejudicial to 

the interest of our Company. 

 

e. You or any dependent member of your family are not to accept commission, a share in 

profits or other payments, loans (other than with established banks or financial 

institutions), services, excessive entertainment and travel or gifts of more than nominal 

value from any individual or organization doing or seeking to do business with the 

Company. 

 

 

 

7. Non Compete 

You will not undertake similar assignments from competitors dealing with 

products similar to those of CBMM Supply, Services and Solutions Pte. Ltd, 

Singapore, during and for a period of six months after termination of the course 

of this contract. 

 

 

 

8. Protection of Interest 

If you conceive or develop any new or advanced methods of improving 

process/formulae/systems in relation to the operation of the Company, such 

developments will be fully communicated to the Company and shall remain 

sole right/property of the Company. 

 

 

 

9.   Service Rules            

You will be required to go through the Service Rules of the Company on your 

joining and your appointment will be governed by the spirit and the letter of 

the existing Service Rules and any modified Service Rules as and when they are 

enforced from time to time.  

 



 

 

 

10.     Leave & Holidays 

You will be entitled to 12 days leave in a Year, public holidays, Emergency 

Leave, benefits, and other allowances as applicable to your category of 

employees and location of posting, in accordance with the rules of the 

Company. 

 

 

11.     Past Record  

In the event, during your tenure of service at any time, it is found or revealed 

that any declarations given or furnished by you to the Company prove to be 

false or if you are found to have willfully suppressed any material information, 

in such a case, you are liable for removal from service at any time without any 

notice or compensation in lieu of the notice period. 

 

 

 

12.      Notice Period 

This contract of employment is terminable by either party giving 60 days notice 

to the Board of Directors. The company reserves the right to pay or recover 

salary in lieu of notice period. Further, the Company may at its discretion 

relieve you from such date as it may deem fit even before the expiry of the 

notice period without compensation for the remaining period and is not bound 

to given any reason thereof if such termination is for ethical/moral grounds. 

 

 

 

13.       On Separation 

On termination of this contract, you will immediately handover before you are 

relieved all correspondence, specifications, formulae, books, documents, cost 

data, market data, literature, drawings, effects or records etc., belonging to the 

Company or relating to its business and shall not make or retain any copies of 

these items. 

  



 

 

 

14.      Roles and Responsibilities 

Your roles and responsibilities have been outlined in Annexure B. 

 

 

Please feel free to seek clarifications if any concerning this appointment after which kindly 

endorse and return one copy of this letter signifying your acceptance. 

 

We trust that in the role of Junior Data Scientist of CBMM Supply, Services and Solutions Pte. 

Ltd you will guide and expand the business of the company in the SE Asian markets and find 

your association with the company both personally and professionally rewarding. 

 

With all our best wishes, 

 

Yours Sincerely, 

For CBMM Supply, Services and Solutions Pte. Ltd 

 

 

 

 

Pranatharthi Haran Sriram 

CEO and Managing Director.  

 

 

 

 

 

ACCEPTANCE 

I accept this offer of appointment on the terms and conditions stated above. 

 

 

 

U. Vamsi Krishna 

 

Date: 1st May 2019 

 

 

 

 

 



 

 

Annexure A 

 

Name U. Vamsi Krishna 

Designation Junior Data Scientist 

Location Chennai 

Date of Joining 1st June 2021 

Salary Monthly 
 

Gross Monthly Salary                                  INR 75,000 

Total A INR 75,000 

 
 

Total B  (any other compensation) Nil 

Total Compensation (A+B) per month in 

INR INR 75,000 

 

 

 

Remarks: Any Income Tax shall be deductible if applicable. 

 

 

For CBMM Supply, Services and Solutions Pte Ltd 

 

 

 

Pranatharthi Haran Sriram 

CEO and Managing Director. 

 

 

 

 

 

 

 

 

 

 



 

 

Annexure B 

Job Description – Junior Data Scientist 

Responsibilities  

• Designing and building efficient, scalable, and resilient micro services that run on AWS or 
Azure. The champion developer is expected to understand the full scope of a feature, how 
it will be realized in our UI, used by our customers, and how our system will perform and 
scale.  

• Committing tested, documented, and reviewed code on a frequent basis, ideally daily. Code 
reviews and automated testing are core to our quality approach.  

• Collaborating effectively with various stakeholders such as Product Director, Front end 
UI/UX team, and data engineers.  

• Deep architectural understanding of good SaaS deployment patterns, and the technical 
options available from the various Cloud providers such as AWS or Azure.  

Required Skills 

• Professional experience using Python.  
• BS in Computer Science or equivalent experience.  
• Proven development experience of RESTful APIs and data analysis libraries such as 

Pandas, Koalas, etc.  
• Experience with the automated build process (continuous integration) and source code 

version control tools (GITHub).  
• Experience with Exploratory Data Analysis including wrangling, grooming, 

transformation, and analysis.  
• Experience applying statistical methods to solve data problems  
• Experience with Microservice Architecture technologies and/or implementations.  
• Must have AWS Lambda/Azure Functions, Batch, Serverless, ECR experiences.  
• Ability to work in an agile environment.  
• Familiar with integrating with data sources such as MongoDB, PostgreSQL, or SQL Server.  
• Strong analysis and problem-solving experience.  

Preferred Skills  

• Experience using large-scale distributed frameworks such as Azure Synapse, Apache Spark 
or Tensorflow.  

• Experience in data pipeline tools Apache Kafka, SSIS, Azure Data Factory, Data Bricks and 
Talend.  

• Experience with NoSQL technologies such as MongoDB, and Cassandra.  

 

For CBMM Supply, Services and Solutions Pte. Ltd 

 

 

Pranatharthi Haran Sriram 

CEO and Managing Director.  



 

 

Bhanu Kumar M                                          Date: 28-Jul-2021 
IT, Chennai 

OFFER OF APPOINTMENT 
 
Dear Bhanu Kumar M 
 
Welcome to the OLAM team!!  
 
We are pleased to offer you appointment as “Engineer (IS2)” in our Company. The terms and conditions of 
your appointment are given below:  
 
1. You will be paid an annual Gross salary of INR 600,000/-cost to company basis, which includes all your 
perquisites and allowances.  
  
2. The breakup of the salary is detailed in the Annexure I. Your average annual target incentive will be INR   
75,000/-. Please note that the actual incentive amount will depend upon the Company, Business Unit and your 
Individual Performance and the actual payout may vary depending upon these parameters.  
 
3. Your next salary revision will be in January 2023 as part of the appraisal cycle for the FY 2022. 
  
4. You will be covered by the Company’s Mediclaim Policy and Gratuity as per company rules. 
 
5. You will be on probation for a period of 6 months from the date of joining viz.,02-Aug-2021, which may be 
extended by another Six months, based on performance.  
 
6. This offer of appointment is valid only till the date of joining you have accepted and committed as above and 
it will automatically cease in the event of your not joining us by the said date.  
 
7. This appointment is terminable from either side, by giving:  
a) ONE months’ notice in writing or salary in lieu of notice, during Probation period  
b)   THREE month’s notice in writing or salary in lieu of notice, after the Confirmation of the services with the 
company.  
 
8. During the course of employment with the company, you shall not enter the service of employment, 
consultancy, full or part time, of any other person or organization or yourself carry on or be interested in any 
business. 
 
9. You shall not, either during or after leaving employment of the company, divulge, make known or 
communicate to any other person or persons, firm, company, concern or yourself make use of any secrets or 
information, which you may acquire, receive or obtain in relation to the affairs of the company, or any other 
matter, which comes to your knowledge in the course of, or by reasons of your appointment with the 
company, except with the consent in writing from the company.  
 
10. You will be entitled for leave as follows:  
36 days per year comprising-12 Sick Leave, 12 Casual Leave & 12 Paid Leave. 
 



 

 

11. Your appointment, continuation and permanency will always be subject to your remaining physically and 
mentally fit and alert considering the nature of your duties. The Management has every right to get you 
medically examined or re-examined at any time by the registered Medical Practitioner, or Eye Specialist or a 
Civil Surgeon appointed by the Company whose findings will be final and binding upon you. 
  
12. You will be governed by the Policies of the company as may be applicable to you from time to time. 
  
13. Your initial place of posting will be in Chennai. You are liable to be transferred from one job to another job 
or from one department to another department or from one establishment to another establishment if 
required by the Management. You shall do such other work, which will be assigned to you by the Management 
from time to time. Any such changes in assignment or transfer will not automatically entitled to any additional 
remuneration, allowance, compensation, or other sum in respect thereof.  
 
14. It is also expressly agreed to by and between us that the Company shall be entitled to loan or transfer your 
services, provisionally for any duration or permanently, wholly or partly to any Company which is or at the 
material time may be an associate, affiliate, successor, assigns or subsidiary or principal contractor to, or the 
latter having a controlling interest in the said company. 
 
15.  You will report to Mr.Rajaram K, Manager or his nominee. 
  
16. Your individual compensation is strictly between yourself and the company. It has been determined based 
on numerous factors such as job role, skills — specific background and professional merit. This information and 
any changes made therein should be treated as personal and confidential.  
 
17. Before preceding on an overseas assignment you will be required to give the company, a written 
undertaking for dedicated services to the client, completing the work/project assigned and timely return to 
resume work in India. The details of such assignments including reimbursement of necessary expenditure will 
be communicated to you before your proceeding on such assignments.  
 
18. While serving the Company, you shall give and devote the whole of your work day exclusively to your 
duties with the Company and shall not engage yourself, directly or indirectly without prior consent in writing of 
the Company with or without remuneration in any trade, business, occupation, employment, service or calling 
which is similar to or the same as that carried out by the Company nor shall you undertake any activities which 
are contrary to or inconsistent either with your duties and obligations under this appointment or with the 
Company’s interests.  
 
19. It is your responsibility to notify the company of any changes in your personal information (like address, 
contact phone number, additional qualifications, marital status, change of nomination, passport details, etc.) 
within 3 working days.  
 
20. Your designation may be changed at the discretion of the company depending on the work assigned to 
you.  
 
21. Upon your resignation or retirement from the company or termination of your services, you are required 
to return all assets and property of the company such as documents, machines, data, files and books etc. 
(including but not limited to leased properties).  
 



 

 

22. You will retire in the normal course from the services of the company at the end of the month in which you 
attain the age of superannuation, which is 60 years.  
 
23. This is a position of continuous responsibility and does not entail payment of extra time or overtime.  
 
24. You may be selected and sponsored by the Company for training assignments with company’s associates or 
other institutions abroad. You will diligently and beneficially, take part in such training and assignment. In such 
event, you will continue to serve the company after such training, for a minimum period as may be stipulated.  
 
25. All programs, system logins, manuals, literatures etc. developed by you while in company service will at all 
times be deemed to be the sole property of the company. Also the company will at all times have the sole 
proprietary right in any new system which you may develop while in company’s service.  
 
26. You shall obtain written permission from the Management Team for any studies giving full details of 
examination and duration. While following studies, the duties and accountabilities of your job will not be 
compromised and the demand arising out of work will prevail over.  
 
27. On the day of joining, you are requested to be present at 9:30 am for your on-boarding formalities at Olam 
Information Services Pvt. Ltd., 12th Floor, Zenith Building, Ascendas IT Park, Chennai. 
 
28. You are expected to remain in duty throughout the business/working hours of the organization and be 
present in time for any meeting or get together scheduled by the company.  
 
29. For the purpose of this clause, the expression “The Company” shall in addition to Olam Information 
Services Private Limited, mean and include any firm, person or Company subsidiary to or affiliated to with 
Olam Information Services Private Limited.  
 
30. If any declaration given or furnished by you to the company in any document submitted for employment 
proves to be false or if you have willfully suppressed any material information, you will be liable to be 
terminated without notice.  
 
31. We request you to produce a proof of age, relieving letter from the previous employers, educational 
certificates, 3 passport size photographs and proof of last drawn salary with a true copy of the same for our 
records.  
 
32. You are advised to keep all original certificates and passport with you all the time to enable you to produce 
the same at short notice, if required for visa processing purposes.  
 
33. You shall be governed from time to time by the laws of the land as applicable to an employee in the 
company’s service.  
 
34. As substantial amount of technical and other information will be obtained by you or will be available to 
you, you will appreciate that any information so obtained must not be communicated directly or indirectly to 
any person, firm or company. You will therefore be agreed to sign a Secrecy Agreement of Non-Disclosure / 
Confidentiality.  
 
35. Non-Disclosure Agreement:  



 

 

 
“Company” for all purposes shall mean Olam Information Services Private Limited, Chennai.  
(a) You shall not, at any time during the continuance or after the termination of your employment hereunder, 
divulge either directly to any person, firm or Company or use for yourself or another any knowledge, 
information, formulae, processes, methods, compositions, ideas or documents, concerning the business and 
affairs of the company or any of its dealings, transactions or affairs which you may acquire the company or any 
of its dealings, transactions or affairs which you may acquire or have to your knowledge during the course of 
and incidental to your employment.  
 
(b) You will not undertake business of similar nature with any other company during the period of your 
employment with this company.  
 
(c) If, during the course of your employment with the Company, you are provided with any Company assets, 
you shall maintain the same in good working condition and you shall return the items to this company prior to 
you separating from the services of the company. Any dues to be paid to you on your ceasing to be in the 
employment is liable to be withheld by the Company if the said items so provided by the Company are not 
returned to the Company, apart from the Company’s right to proceed against you as per the provisions of law.  
 
(d) You shall surrender all the records, correspondence and such of the papers connected with the business in 
the eventuality of your ceasing to be in the employment of this Company.  
 
(e) During your employment with the Company, you shall be subject to, and have to abide by, the rules and 
regulations stipulated by the Company. The Company may, at its discretion, modify, from time to time, the 
rules and regulations, as it deems fit, without notice.  
 
We have pleasure in welcoming you and looking forward to mutually meaningful association.  
 
Yours truly,  
For Olam Information Services Private Limited,  

 
Arvind Raj B 
Vice President – Human Resources 
 
(The appointment letter is enclosed in duplicate and you are requested to sign the duplicate copy of the 
appointment letter.)  
 

 
I have Read, Understood and Accepted the terms and conditions of employment. As desired, I will join the 
company’s services w.e.f. __________________________. 
 
 
Signature:……………………..                             Date:……………………………  

 
 



 

 

ANNEXURE – I 
 

 
 
Name:    Bhanu Kumar M 
 
Grade:   IS2 
 
Date of Joining:  02-Aug-2021 
 
  
The breakup of the Salary is given below:  
 
   
 

Salary Component / Break-up 
Monthly 

Amount (INR) 
Annual 

Amount (INR)  

Fixed Pay 

Basic 20,000 240,000 
 

HRA 10,000 120,000 
 

Special Allowance 10,100 121,200 
 

TOTAL 40,100 481,200  

Reimbursements 

Telephone 3,000 36,000 
 

LTA 2,500 30,000 
 

Food Coupons 2,000 24,000 
 

TOTAL 7,500 90,000  

Retirals 
PF 2,400 28,800 

 

TOTAL 2,400 28,800  

GROSS CTC 50,000 600,000  

Performance Incentives   75,000 
 

TOTAL CTC 50,000 675,000 
 

 
 

                           
Arvind Raj B 
Vice President – Human Resources 
                                                            


